Zdeněk Pilát

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2040580/publications.pdf

Version: 2024-02-01

933447 940533 23 526 10 16 citations g-index h-index papers 25 25 25 773 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Raman Microspectroscopic Analysis of Selenium Bioaccumulation by Green Alga Chlorella vulgaris. Biosensors, 2021, 11, 115.	4.7	3
2	Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field. ACS Applied Materials & Interfaces, 2021, 13, 50657-50667.	8.0	4
3	Analysis of Bacteriophage–Host Interaction by Raman Tweezers. Analytical Chemistry, 2020, 92, 12304-12311.	6.5	6
4	Wavelength-Dependent Optical Force Aggregation of Gold Nanorods for SERS in a Microfluidic Chip. Journal of Physical Chemistry C, 2019, 123, 5608-5615.	3.1	38
5	Analysis of microorganisms, chlorinated hydrocarbons and hyaluronic acid gel using Raman based optofluidic techniques and SERS. , 2019, , .		O
6	Monitoring Candida parapsilosis and Staphylococcus epidermidis Biofilms by a Combination of Scanning Electron Microscopy and Raman Spectroscopy. Sensors, 2018, 18, 4089.	3.8	23
7	Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips. Sensors, 2018, 18, 3212.	3.8	6
8	Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress. Sensors, 2018, 18, 1623.	3.8	34
9	Laser tweezers Raman spectroscopy of E. coli under antibiotic stress in microfluidic chips., 2018,,.		1
10	Surface-enhanced Raman spectroscopy of chloroalkanes in microfluidic chips., 2018,,.		0
11	Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System. Sensors, 2017, 17, 2640.	3.8	30
12	Thermal tuning of spectral emission from optically trapped liquid-crystal droplet resonators. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1855.	2.1	13
13	Directed evolution of enzymes using microfluidic chips. , 2016, , .		0
14	Raman-Tweezers Optofluidic System for Automatic Analysis and Sorting of Living Cells. , 2015, , .		0
15	Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review. Sensors, 2014, 14, 17725-17752.	3.8	53
16	Raman tweezers in microfluidic systems for analysis and sorting of living cells. , 2014, , .		3
17	Raman tweezers in microfluidic systems for analysis and sorting of living cells. , 2014, , .		0
18	Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching. Optics Express, 2013, 21, 21380.	3.4	27

ZdenÄ>k PilÃit

#	Article	lF	CITATIONS
19	Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy. Molecules, 2013, 18, 13188-13199.	3.8	78
20	Raman microspectroscopy of algal lipid bodies: \hat{l}^2 -carotene quantification. Journal of Applied Phycology, 2012, 24, 541-546.	2.8	44
21	Raman microspectroscopy of algal lipid bodies: \hat{l}^2 -carotene as a volume sensor. Proceedings of SPIE, 2011, , .	0.8	7
22	Raman spectroscopy for the characterization of algal cells. Proceedings of SPIE, 2010, , .	0.8	2
23	Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo. Sensors, 2010, 10, 8635-8651.	3.8	151