Carlo Riccardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2039412/publications.pdf

Version: 2024-02-01

254 papers 17,843 citations

59 h-index 127 g-index

260 all docs

260 docs citations

260 times ranked 17757 citing authors

#	Article	IF	CITATIONS
1	Immunomodulatory and Anti-Inflammatory Properties of Glucocorticoids. , 2022, , 394-421.		1
2	Glucocorticoid-Induced Leucine Zipper Alleviates Lung Inflammation and Enhances Bacterial Clearance during Pneumococcal Pneumonia. Cells, 2022, 11, 532.	4.1	4
3	GILZ as a Regulator of Cell Fate and Inflammation. Cells, 2022, 11, 122.	4.1	15
4	The novel role of glucocorticoid-induced leucine zipper as a marker of mucosal healing in inflammatory bowel diseases. Pharmacological Research, 2022, 182, 106353.	7.1	2
5	Deficit of glucocorticoidâ€induced leucine zipper amplifies angiotensinâ€induced cardiomyocyte hypertrophy and diastolic dysfunction. Journal of Cellular and Molecular Medicine, 2021, 25, 217-228.	3.6	7
6	Exploiting the pro-resolving actions of glucocorticoid-induced proteins Annexin A1 and GILZ in infectious diseases. Biomedicine and Pharmacotherapy, 2021, 133, 111033.	5.6	13
7	Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment. Cell Death and Disease, 2021, 12, 421.	6.3	9
8	Glucocorticoid Therapy in Inflammatory Bowel Disease: Mechanisms and Clinical Practice. Frontiers in Immunology, 2021, 12, 691480.	4.8	69
9	Glucocorticoid-Induced Leucine Zipper (GILZ) in Cardiovascular Health and Disease. Cells, 2021, 10, 2155.	4.1	4
10	Glucocorticoid-Induced Leucine Zipper-Mediated TLR2 Downregulation Accounts for Reduced Neutrophil Activity Following Acute DEX Treatment. Cells, 2021, 10, 2228.	4.1	6
11	Editorial: Defects in Regulation: How, Where and When the Immune System Can Go Wrong. Frontiers in Immunology, 2021, 12, 746418.	4.8	3
12	A recombinant glucocorticoidâ€induced leucine zipper protein ameliorates symptoms of dextran sulfate sodiumâ€induced colitis by improving intestinal permeability. FASEB Journal, 2021, 35, e21950.	0.5	10
13	Telomeres Increasingly Develop Aberrant Structures in Aging Humans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 230-235.	3.6	10
14	Molecular mechanisms underlying eicosapentaenoic acid inhibition of HDAC1 and DNMT expression and activity in carcinoma cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194481.	1.9	21
15	GITR controls intestinal inflammation by suppressing ILâ€15â€dependent NK cell activity. FASEB Journal, 2020, 34, 14820-14831.	0.5	8
16	Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. European Heart Journal, 2020, 41, 2938-2948.	2.2	22
17	Glucocorticoid-induced leucine zipper modulates macrophage polarization and apoptotic cell clearance. Pharmacological Research, 2020, 158, 104842.	7.1	22
18	Altered glucocorticoid metabolism represents a feature of macrophâ€aging. Aging Cell, 2020, 19, e13156.	6.7	24

#	Article	IF	CITATIONS
19	Regulation of Innate Lymphoid Cells in Acute Kidney Injury: Crosstalk between Cannabidiol and GILZ. Journal of Immunology Research, 2020, 2020, 1-10.	2.2	11
20	Microencapsulated G3C Hybridoma Cell Graft Delays the Onset of Spontaneous Diabetes in NOD Mice by an Expansion of Gitr+ Treg Cells. Diabetes, 2020, 69, 965-980.	0.6	7
21	Effects of protein-protein interface disruptors at the ligand of the glucocorticoid-induced tumor necrosis factor receptor-related gene (GITR). Biochemical Pharmacology, 2020, 178, 114110.	4.4	9
22	The glucocorticoidâ€induced leucine zipper mediates statinâ€induced muscle damage. FASEB Journal, 2020, 34, 4684-4701.	0.5	19
23	L-GILZ binds and inhibits nuclear factor κB nuclear translocation in undifferentiated thyroid cancer cells. Journal of Chemotherapy, 2020, 32, 263-267.	1.5	4
24	Glucocorticoid-Induced Leucine Zipper as a Druggable Target in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2020, 26, 1017-1025.	1.9	8
25	Bcl-xL overexpression decreases GILZ levels and inhibits glucocorticoid-induced activation of caspase-8 and caspase-3 in mouse thymocytes. Journal of Translational Autoimmunity, 2020, 3, 100035.	4.0	12
26	A Glance at the Use of Glucocorticoids in Rare Inflammatory and Autoimmune Diseases: Still an Indispensable Pharmacological Tool?. Frontiers in Immunology, 2020, 11, 613435.	4.8	22
27	Implicating the Role of GILZ in Glucocorticoid Modulation of T-Cell Activation. Frontiers in Immunology, 2019, 10, 1823.	4.8	40
28	Identification of 15 T Cell Restricted Genes Evaluates T Cell Infiltration of Human Healthy Tissues and Cancers and Shows Prognostic and Predictive Potential. International Journal of Molecular Sciences, 2019, 20, 5242.	4.1	7
29	Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome. Clinical Epigenetics, 2019, 11, 121.	4.1	21
30	Fusarubin and Anhydrofusarubin Isolated from A Cladosporium Species Inhibit Cell Growth in Human Cancer Cell Lines. Toxins, 2019, 11, 503.	3.4	28
31	Artocarpus tonkinensis Protects Mice Against Collagen-Induced Arthritis and Decreases Th17 Cell Function. Frontiers in Pharmacology, 2019, 10, 503.	3 . 5	10
32	Context-Dependent Effect of Glucocorticoids on the Proliferation, Differentiation, and Apoptosis of Regulatory T Cells: A Review of the Empirical Evidence and Clinical Applications. International Journal of Molecular Sciences, 2019, 20, 1142.	4.1	45
33	Engineered Alginate Microcapsules for Molecular Therapy Through Biologic Secreting Cells. Tissue Engineering - Part C: Methods, 2019, 25, 296-304.	2.1	4
34	Glucocorticoid-Induced Leucine Zipper: A Novel Anti-inflammatory Molecule. Frontiers in Pharmacology, 2019, 10, 308.	3.5	55
35	Novel Immune Targets in Melanomaâ€"Letter. Clinical Cancer Research, 2019, 25, 5422-5423.	7.0	1
36	Selective CB2 inverse agonist JTE907 drives T cell differentiation towards a Treg cell phenotype and ameliorates inflammation in a mouse model of inflammatory bowel disease. Pharmacological Research, 2019, 141, 21-31.	7.1	29

#	Article	IF	Citations
37	Long glucocorticoid-induced leucine zipper regulates human thyroid cancer cell proliferation. Cell Death and Disease, 2018, 9, 305.	6.3	16
38	GITR cosignal in ILC2s controls allergic lung inflammation. Journal of Allergy and Clinical Immunology, 2018, 141, 1939-1943.e8.	2.9	49
39	WITHDRAWN—Administrative Duplicate Publication: The Hexane Fraction of <i>Bursera microphylla</i> A. Gray Induces p21-Mediated Anti-Proliferative and Pro-Apoptotic Effects in Human Cancer-Derived Cell Lines. Integrative Cancer Therapies, 2018, 17, 138-147.	2.0	2
40	A dual role for glucocorticoid-induced leucine zipper in glucocorticoid function: tumor growth promotion or suppression?. Cell Death and Disease, 2018, 9, 463.	6.3	32
41	Potential effect of tumor-specific Treg-targeted antibodies in the treatment of human cancers: A bioinformatics analysis. Oncolmmunology, 2018, 7, e1387705.	4.6	28
42	How Glucocorticoids Affect the Neutrophil Life. International Journal of Molecular Sciences, 2018, 19, 4090.	4.1	134
43	Role of Endogenous Glucocorticoids in Cancer in the Elderly. International Journal of Molecular Sciences, 2018, 19, 3774.	4.1	14
44	Glucocorticoid-Induced Leucine Zipper Promotes Neutrophil and T-Cell Polarization with Protective Effects in Acute Kidney Injury. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 483-493.	2.5	19
45	Treatment of Autoimmune Diseases and Prevention of Transplant Rejection and Graft-Versus-Host Disease by Regulatory T Cells: The State of the Art and Perspectives. , 2018, , 321-357.		6
46	Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1â€dependent mechanism. FASEB Journal, 2018, 32, 5990-6001.	0.5	14
47	Defining the role of glucocorticoids in inflammation. Clinical Science, 2018, 132, 1529-1543.	4.3	75
48	Glucocorticoid-Induced Leucine Zipper Inhibits Interferon-Gamma Production in B Cells and Suppresses Colitis in Mice. Frontiers in Immunology, 2018, 9, 1720.	4.8	25
49	Glucocorticoids, Sex Hormones, and Immunity. Frontiers in Immunology, 2018, 9, 1332.	4.8	174
50	PP242 Counteracts Glioblastoma Cell Proliferation, Migration, Invasiveness and Stemness Properties by Inhibiting mTORC2/AKT. Frontiers in Cellular Neuroscience, 2018, 12, 99.	3.7	34
51	Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy. Expert Opinion on Therapeutic Targets, 2018, 22, 783-797.	3.4	41
52	Glucocorticoids: Immunity and Inflammation. , 2018, , 267-281.		0
53	Amplified Host Defense by Toll-Like Receptor-Mediated Downregulation of the Glucocorticoid-Induced Leucine Zipper (GILZ) in Macrophages. Frontiers in Immunology, 2018, 9, 3111.	4.8	25
54	GILZ restrains neutrophil activation by inhibiting the MAPK pathway. Journal of Leukocyte Biology, 2018, 105, 187-194.	3.3	33

#	Article	IF	CITATIONS
55	Newly Designed Alginate-Based Microcapsules (AgMc) for the Molecular Therapy of Type 1 Diabetes. Diabetes, 2018, 67, .	0.6	0
56	Aberrant expression of \hat{l}^2 -catenin in CD4+ T cells isolated from primary progressive multiple sclerosis patients. Neuroscience Letters, 2017, 653, 159-162.	2.1	5
57	The Hexane Fraction of <i>Bursera microphylla</i> A Gray Induces p21-Mediated Antiproliferative and Proapoptotic Effects in Human Cancer–Derived Cell Lines. Integrative Cancer Therapies, 2017, 16, 426-435.	2.0	11
58	Role of the glucocorticoidâ€induced leucine zipper gene in dexamethasoneâ€induced inhibition of mouse neutrophil migration via control of annexin A1 expression. FASEB Journal, 2017, 31, 3054-3065.	0.5	35
59	Levels of S100B protein drive the reparative process in acute muscle injury and muscular dystrophy. Scientific Reports, 2017, 7, 12537.	3.3	37
60	SUMO proteins: Guardians of immune system. Journal of Autoimmunity, 2017, 84, 21-28.	6.5	42
61	Wnt/ \hat{l}^2 -Catenin Signaling Induces Integrin $\hat{l}\pm4\hat{l}^21$ in T Cells and Promotes a Progressive Neuroinflammatory Disease in Mice. Journal of Immunology, 2017, 199, 3031-3041.	0.8	22
62	The role of GITR singleâ€positive cells in immune homeostasis. Immunity, Inflammation and Disease, 2017, 5, 4-6.	2.7	14
63	The Proinflammatory Cytokine GITRL Contributes to TRAIL-mediated Neurotoxicity in the HCN-2 Human Neuronal Cell Line. Current Alzheimer Research, 2017, 14, 1090-1101.	1.4	4
64	Integration of Traditional and Western Medicine in Vietnamese Populations: A Review of Health Perceptions and Therapies. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	10
65	Overexpression of Glucocorticoid-induced Leucine Zipper (GILZ) increases susceptibility to Imiquimod-induced psoriasis and involves cutaneous activation of TGF- \hat{l}^21 . Scientific Reports, 2016, 6, 38825.	3.3	16
66	Induction of Glucocorticoid-induced Leucine Zipper (GILZ) Contributes to Anti-inflammatory Effects of the Natural Product Curcumin in Macrophages. Journal of Biological Chemistry, 2016, 291, 22949-22960.	3.4	41
67	Modulation of tumor immunity: a patent evaluation of WO2015026684A1. Expert Opinion on Therapeutic Patents, 2016, 26, 417-425.	5.0	8
68	Integration of Traditional and Western Medicine in Vietnamese Populations: A Review of Health Perceptions and Therapies. Natural Product Communications, 2016, 11, 1409-1416.	0.5	10
69	The expanding role of immunopharmacology: <scp>IUPHAR</scp> Review 16. British Journal of Pharmacology, 2015, 172, 4217-4227.	5.4	23
70	Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and results in B-cell lymphocytosis in mice. Blood, 2015, 126, 1790-1801.	1.4	58
71	Are we Able to Harness the Immunomodulatory Power of Cytokines for Novel Autoimmune Disease Treatments?. American Journal of Pharmacology and Toxicology, 2015, 10, 37-39.	0.7	2
72	GILZ as a Mediator of the Anti-Inflammatory Effects of Glucocorticoids. Frontiers in Endocrinology, 2015, 6, 170.	3.5	106

#	Article	IF	Citations
73	Glucocorticoid-Induced Tumour Necrosis Factor Receptor-Related Protein: A Key Marker of Functional Regulatory T Cells. Journal of Immunology Research, 2015, 2015, 1-17.	2.2	112
74	The novel partnership of L-GILZ and p53: a new affair in cancer?. Molecular and Cellular Oncology, 2015, 2, e975087.	0.7	3
75	A focused Real Time PCR strategy to determine GILZ expression in mouse tissues. Results in Immunology, 2015, 5, 37-42.	2.2	13
76	Artesunate induces ROS- and p38 MAPK-mediated apoptosis and counteracts tumor growth <i>in vivo</i> ii>in embryonal rhabdomyosarcoma cells. Carcinogenesis, 2015, 36, 1071-1083.	2.8	77
77	The Clinical Pharmacology of Past, Present, and Future Glucocorticoids. , 2015, , 43-58.		2
78	The Molecular and Cellular Mechanisms Responsible for the Anti-inflammatory and Immunosuppressive Effects of Glucocorticoids., 2015,, 25-41.		2
79	The Role and Effects of Glucocorticoid-Induced Leucine Zipper in the Context of Inflammation Resolution. Journal of Immunology, 2015, 194, 4940-4950.	0.8	99
80	Glucocorticoid-Induced Leucine Zipper: A Critical Factor in Macrophage Endotoxin Tolerance. Journal of Immunology, 2015, 194, 6057-6067.	0.8	76
81	The viability of Lactobacillus fermentum CECT5716 is not essential to exert intestinal anti-inflammatory properties. Food and Function, 2015, 6, 1176-1184.	4.6	24
82	GITR+ regulatory T cells in the treatment of autoimmune diseases. Autoimmunity Reviews, 2015, 14, 117-126.	5.8	65
83	L-GILZ binds p53 and MDM2 and suppresses tumor growth through p53 activation in human cancer cells. Cell Death and Differentiation, 2015, 22, 118-130.	11.2	25
84	Expansion of regulatory GITR+CD25low/-CD4+ T cells in systemic lupus erythematosus patients. Arthritis Research and Therapy, 2014, 16, 444.	3.5	47
85	Pharmacological Modulation of Caspase-8 in Thymus-Related Medical Conditions. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 18-24.	2.5	3
86	Hepatocyte Growth Factor Limits Autoimmune Neuroinflammation via Glucocorticoid-Induced Leucine Zipper Expression in Dendritic Cells. Journal of Immunology, 2014, 193, 2743-2752.	0.8	56
87	GILZ Promotes Production of Peripherally Induced Treg Cells and Mediates the Crosstalk between Glucocorticoids and TGF-Î ² Signaling. Cell Reports, 2014, 7, 464-475.	6.4	118
88	Role of caspase-8 in thymus function. Cell Death and Differentiation, 2014, 21, 226-233.	11.2	32
89	Glucocorticoidâ€Induced Leucine Zipper (<scp>GILZ</scp>) Controls Inflammation and Tissue Damage after Spinal Cord Injury. CNS Neuroscience and Therapeutics, 2014, 20, 973-981.	3.9	15
90	Recombinant long-glucocorticoid-induced leucine zipper (L-GILZ) protein restores the control of proliferation in gilz KO spermatogonia. European Journal of Pharmaceutical Sciences, 2014, 63, 22-28.	4.0	12

#	Article	IF	CITATIONS
91	Transcriptional regulation of kinases downstream of the T cell receptor: another immunomodulatory mechanism of glucocorticoids. BMC Pharmacology & Empty Toxicology, 2014, 15, 35.	2.4	23
92	Targeting glucocorticoid side effects: selective glucocorticoid receptor modulator or glucocorticoidâ€induced leucine zipper? A perspective. FASEB Journal, 2014, 28, 5055-5070.	0.5	68
93	Eicosapentaenoic Acid Activates RAS/ERK/C/EBPβ Pathway through H-Ras Intron 1 CpG Island Demethylation in U937 Leukemia Cells. PLoS ONE, 2014, 9, e85025.	2.5	26
94	Glucocorticoid-Induced Tumor Necrosis Factor Receptor Family-Related Ligand Triggering Upregulates Vascular Cell Adhesion Molecule-1 and Intercellular Adhesion Molecule-1 and Promotes Leukocyte Adhesion. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 164-172.	2.5	29
95	LPS resistance of SPRET/Ei mice is mediated by Gilz, encoded by the <i>Tsc22d3</i> gene on the X chromosome. EMBO Molecular Medicine, 2013, 5, 456-470.	6.9	69
96	Dexamethasone-FITC staining application for measurement of circadian rhythmicity of glucocorticoid receptor expression in mouse living thymocyte subsets. Journal of Neuroimmunology, 2013, 261, 44-52.	2.3	5
97	Characterization of a new regulatory CD4+ T cell subset in primary Sjogren's syndrome. Rheumatology, 2013, 52, 1387-1396.	1.9	63
98	Characterization of CD4+ and CD8+ Tregs in a Hodgkin's lymphoma patient presenting with myasthenia-like symptoms. Ideggyogyaszati Szemle, 2013, 66, 343-8.	0.7	2
99	Balance between Regulatory T and Th17 Cells in Systemic Lupus Erythematosus: The Old and the New. Clinical and Developmental Immunology, 2012, 2012, 1-5.	3.3	127
100	Long Glucocorticoid-induced Leucine Zipper (L-GILZ) Protein Interacts with Ras Protein Pathway and Contributes to Spermatogenesis Control*. Journal of Biological Chemistry, 2012, 287, 1242-1251.	3.4	77
101	The intracellular portion of GITR enhances NGF-promoted neurite growth through an inverse modulation of Erk and NF-κB signalling. Biology Open, 2012, 1, 1016-1023.	1.2	14
102	Pontin is essential for murine hematopoietic stem cell survival. Haematologica, 2012, 97, 1291-1294.	3.5	41
103	Pharmacological modulation of GITRL/GITR system: therapeutic perspectives. British Journal of Pharmacology, 2012, 165, 2089-2099.	5.4	74
104	Mechanisms of the antiâ€inflammatory effects of glucocorticoids: genomic and nongenomic interference with MAPK signaling pathways. FASEB Journal, 2012, 26, 4805-4820.	0.5	142
105	Murine B Cell Development and Antibody Responses to Model Antigens Are Not Impaired in the Absence of the TNF Receptor GITR. PLoS ONE, 2012, 7, e31632.	2.5	19
106	Expansion of CD4+CD25-GITR+ regulatory T-cell subset in the peripheral blood of patients with primary SjĶgren's syndrome: correlation with disease activity. Reumatismo, 2012, 64, 293-8.	0.9	14
107	CD8 ⁺ T Cells: GITR Matters. Scientific World Journal, The, 2012, 2012, 1-7.	2.1	27
108	Glucocorticoid-Induced Leucine Zipper (GILZ) Over-Expression in T Lymphocytes Inhibits Inflammation and Tissue Damage in Spinal Cord Injury. Neurotherapeutics, 2012, 9, 210-225.	4.4	55

#	Article	IF	Citations
109	GITR Gene Deletion and GITR-Fc Soluble Protein Administration Inhibit Multiple Organ Failure Induced by Zymosan. Shock, 2011, 36, 263-271.	2.1	14
110	Efficacy of very-low-dose betamethasone on neurological symptoms in ataxia-telangiectasia. European Journal of Neurology, 2011, 18, 564-570.	3.3	62
111	The glucocorticoidâ€induced TNF receptor familyâ€related protein (GITR) is critical to the development of acute pancreatitis in mice. British Journal of Pharmacology, 2011, 162, 1186-1201.	5.4	20
112	Glucocorticoid-induced activation of caspase-8 protects the glucocorticoid-induced protein Gilz from proteasomal degradation and induces its binding to SUMO-1 in murine thymocytes. Cell Death and Differentiation, 2011, 18, 183-190.	11.2	17
113	Effect of dietary saturated fatty acids on HNF-4α DNA binding activity and ApoCIII mRNA in sedentary rat liver. Molecular and Cellular Biochemistry, 2011, 347, 29-39.	3.1	13
114	CD4 ⁺ CD25 ^{low} GITR ⁺ cells: A novel human CD4 ⁺ Tâ€eell population with regulatory activity. European Journal of Immunology, 2011, 41, 2269-2278.	2.9	54
115	Glucocorticoid-Induced TNFR family Related gene (GITR) enhances dendritic cell activity. Immunology Letters, 2011, 135, 24-33.	2.5	15
116	Eicosapentaenoic Acid Demethylates a Single CpG That Mediates Expression of Tumor Suppressor CCAAT/Enhancer-binding Protein $\hat{\Gamma}$ in U937 Leukemia Cells. Journal of Biological Chemistry, 2011, 286, 27092-27102.	3.4	70
117	Role of regulatory T cells in rheumatoid arthritis: facts and hypothesis. Autoimmunity Highlights, 2010, 1, 45-51.	3.9	17
118	GITR contributes to the systemic adjuvanticity of the <i>Escherichia coli</i> heatâ€labile enterotoxin. European Journal of Immunology, 2010, 40, 754-763.	2.9	3
119	Glucocorticoid-induced Leucine Zipper (GILZ) and Long GILZ Inhibit Myogenic Differentiation and Mediate Anti-myogenic Effects of Glucocorticoids. Journal of Biological Chemistry, 2010, 285, 10385-10396.	3.4	61
120	CD8 T Cell-Intrinsic GITR Is Required for T Cell Clonal Expansion and Mouse Survival following Severe Influenza Infection. Journal of Immunology, 2010, 185, 7223-7234.	0.8	90
121	Neutralization of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Reduces Spinal Cord Injury Damage in Mice. Neuropsychopharmacology, 2010, 35, 1302-1314.	5.4	30
122	Silymarin suppress CD4+ T cell activation and proliferation: Effects on NF-κB activity and IL-2 production. Pharmacological Research, 2010, 61, 405-409.	7.1	77
123	Glucocorticoidâ€induced leucine zipper (GILZ): a new important mediator of glucocorticoid action. FASEB Journal, 2009, 23, 3649-3658.	0.5	281
124	Identification of regulatory T cells in systemic lupus erythematosus. Autoimmunity Reviews, 2009, 8, 426-430.	5.8	65
125	The GITRL–GITR system alters TLR-4 expression on DC during fungal infection. Cellular Immunology, 2009, 257, 13-22.	3.0	13
126	Glucocorticoid-Induced Leucine Zipper Is Protective in Th1-Mediated Models of Colitis. Gastroenterology, 2009, 136, 530-541.	1.3	122

#	Article	IF	CITATIONS
127	PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-α MODULATES THE ANTI-INFLAMMATORY EFFECT OF GLUCOCORTICOIDS IN A MODEL OF INFLAMMATORY BOWEL DISEASE IN MICE. Shock, 2009, 31, 308-316.	2.1	45
128	GITR: A Modulator of Immune Response and Inflammation. Advances in Experimental Medicine and Biology, 2009, 647, 156-173.	1.6	124
129	Coâ€inhibitory roles for glucocorticoidâ€induced TNF receptor in CD1dâ€dependent natural killer T cells. European Journal of Immunology, 2008, 38, 2229-2240.	2.9	18
130	NGF-promoted axon growth and target innervation requires GITRL-GITR signaling. Nature Neuroscience, 2008, 11, 135-142.	14.8	55
131	Glucocorticoid-Induced Tumor Necrosis Factor Receptor-Related (GITR)-Fc Fusion Protein Inhibits GITR Triggering and Protects from the Inflammatory Response after Spinal Cord Injury. Molecular Pharmacology, 2008, 73, 1610-1621.	2.3	29
132	Peroxisome Proliferator-Activated Receptor-α Contributes to the Anti-Inflammatory Activity of Glucocorticoids. Molecular Pharmacology, 2008, 73, 323-337.	2.3	59
133	Glucocorticoid-Induced TNFR-Related Protein Lowers the Threshold of CD28 Costimulation in CD8+ T Cells. Journal of Immunology, 2007, 179, 5916-5926.	0.8	83
134	Genetic and pharmacological inhibition of GITRâ€GITRL interaction reduces chronic lung injury induced by bleomycin instillation. FASEB Journal, 2007, 21, 117-129.	0.5	39
135	Estrogen Receptor Antagonist Fulvestrant (ICI 182,780) Inhibits the Anti-Inflammatory Effect of Glucocorticoids. Molecular Pharmacology, 2007, 71, 132-144.	2.3	23
136	GITR modulates innate and adaptive mucosal immunity during the development of experimental colitis in mice. Gut, 2007, 56, 52-60.	12.1	63
137	Another brick in building the thymus. Blood, 2007, 109, 856-856.	1.4	0
138	GITR-GITRL System, A Novel Player in Shock and Inflammation. Scientific World Journal, The, 2007, 7, 533-566.	2.1	53
139	GITR/GITRL: More than an effector T cell co-stimulatory system. European Journal of Immunology, 2007, 37, 1165-1169.	2.9	121
140	Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Medicine, 2007, 13, 579-586.	30.7	298
141	Endothelial dysfunction in vivo is related to monocyte resistin mRNA expression. Journal of Clinical Pharmacy and Therapeutics, 2007, 32, 373-379.	1.5	15
142	Modulation of Acute and Chronic Inflammation of the Lung by GITR and its Ligand. Annals of the New York Academy of Sciences, 2007, 1107, 380-391.	3.8	18
143	GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling. Journal of Clinical Investigation, 2007, 117, 1605-1615.	8.2	140
144	Glucocorticoid-induced leucine zipper (GILZ)/NF-ÂB interaction: role of GILZ homo-dimerization and C-terminal domain. Nucleic Acids Research, 2006, 35, 517-528.	14.5	126

#	Article	IF	CITATIONS
145	Inhibited cell death, NF-κB activity and increased IL-10 in TCR-triggered thymocytes of transgenic mice overexpressing the glucocorticoid-induced protein GILZ. International Immunopharmacology, 2006, 6, 1126-1134.	3.8	42
146	Increased GILZ expression in transgenic mice up-regulates Th-2 lymphokines. Blood, 2006, 107, 1039-1047.	1.4	91
147	Analysis of apoptosis by propidium iodide staining and flow cytometry. Nature Protocols, 2006, 1, 1458-1461.	12.0	1,343
148	Genomic and non-genomic effects of different glucocorticoids on mouse thymocyte apoptosis. European Journal of Pharmacology, 2006, 529, 63-70.	3.5	30
149	Proinflammatory Role of Glucocorticoid-Induced TNF Receptor-Related Gene in Acute Lung Inflammation. Journal of Immunology, 2006, 177, 631-641.	0.8	58
150	Modulation of Pro- and Antiapoptotic Molecules in Double-Positive (CD4+CD8+) Thymocytes following Dexamethasone Treatment. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 887-897.	2.5	37
151	GITR: a multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. European Journal of Immunology, 2005, 35, 1016-1022.	2.9	163
152	Glucocorticoid-induced Tumor Necrosis Factor Receptor Is a p21 Transcriptional Target Conferring Resistance of Keratinocytes to UV Light-induced Apoptosis. Journal of Biological Chemistry, 2005, 280, 37725-37731.	3.4	29
153	Role of glucocorticoidâ€induced TNF receptor family gene (GITR) in collagenâ€induced arthritis. FASEB Journal, 2005, 19, 1253-1265.	0.5	94
154	The Glucocorticoid-Induced Tumor Necrosis Factor Receptor-Related Gene Modulates the Response to Candida albicans Infection. Infection and Immunity, 2005, 73, 7502-7508.	2.2	39
155	Dietary PUFA modulate the expression of proliferation and differentiation markers in Morris 3924A hepatoma cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1737, 138-144.	2.4	4
156	GITR Activation Induces an Opposite Effect on Alloreactive CD4+ and CD8+ T Cells in Graft-Versus-Host Disease. Journal of Experimental Medicine, 2004, 200, 149-157.	8.5	95
157	Dietary $\hat{l}\pm$ -linolenic acid reduces COX-2 expression and induces apoptosis of hepatoma cells. Journal of Lipid Research, 2004, 45, 308-316.	4.2	56
158	Glucocorticoid-induced TNF receptor family gene (GITR) knockout mice exhibit a resistance to splanchnic artery occlusion (SAO) shock. Journal of Leukocyte Biology, 2004, 76, 933-940.	3.3	35
159	Synthesis and evaluation of anti-apoptotic activity of L-carnitine cyclic analogues and amino acid derivatives. Il Farmaco, 2004, 59, 271-277.	0.9	5
160	Frontline: GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. European Journal of Immunology, 2004, 34, 613-622.	2.9	320
161	Decrease of Bcl-xL and augmentation of thymocyte apoptosis in GILZ overexpressing transgenic mice. Blood, 2004, 104, 4134-4141.	1.4	94
162	1,4-Benzothiazine analogues and apoptosis. Bioorganic and Medicinal Chemistry, 2003, 11, 3245-3254.	3.0	16

#	Article	IF	Citations
163	Dexamethasone-induced thymocytes apoptosis requires glucocorticoid receptor nuclear translocation but not mitochondrial membrane potential transition. Toxicology Letters, 2003, 139, 175-180.	0.8	18
164	Sphingolipids and the immune system. Pharmacological Research, 2003, 47, 421-437.	7.1	71
165	Enhanced expression of hepatic lipogenic enzymes in an animal model of sedentariness. Journal of Lipid Research, 2003, 44, 696-704.	4.2	6
166	Dexamethasone-induced apoptosis of thymocytes: role of glucocorticoid receptor–associated Src kinase and caspase-8 activation. Blood, 2003, 101, 585-593.	1.4	113
167	Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood, 2003, 101, 729-738.	1.4	267
168	Induction of Apoptosis by 1,4-Benzothiazine Analogs in Mouse Thymocytes. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 1053-1062.	2.5	12
169	Glucocorticoid-Induced Leucine Zipper Inhibits the Raf-Extracellular Signal-Regulated Kinase Pathway by Binding to Raf-1. Molecular and Cellular Biology, 2002, 22, 7929-7941.	2.3	161
170	Role of GITR in activation response of T lymphocytes. Blood, 2002, 100, 350-352.	1.4	172
171	Molecular mechanisms of immunomodulatory activity of glucocorticoids. Pharmacological Research, 2002, 45, 361-368.	7.1	106
172	GITR interacts with the pro-apoptotic protein Siva and induces apoptosis. Cell Death and Differentiation, 2002, 9, 1382-1384.	11.2	94
173	Differential expression of CD44 isoforms during liver regeneration in rats. Journal of Hepatology, 2001, 34, 555-561.	3.7	15
174	Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor \hat{P} B. Blood, 2001, 98, 743-753.	1.4	297
175	Cloning, chromosomal assignment and tissue distribution of human GILZ, a glucocorticoid hormone-induced gene. Cell Death and Differentiation, 2001, 8, 201-203.	11.2	109
176	GILZ, a glucocorticoid hormone induced gene, modulates T lymphocytes activation and death through interaction with NF-kB. Advances in Experimental Medicine and Biology, 2001, 495, 31-39.	1.6	51
177	Identification of three novel mRNA splice variants of GITR. Cell Death and Differentiation, 2000, 7, 408-410.	11.2	32
178	Dexamethasone increases the incorporation of [3H]serine into phosphatidylserine and the activity of serine base exchange enzyme in mouse thymocytes: a possible relation between serine base exchange enzyme and apoptosis. Molecular and Cellular Biochemistry, 2000, 211, 61-67.	3.1	12
179	Gene Structure and Chromosomal Assignment of Mouse GITR, a Member of the Tumor Necrosis Factor/Nerve Growth Factor Receptor Family. DNA and Cell Biology, 2000, 19, 205-217.	1.9	27
180	Cloning and Expression of a Short Fas Ligand: A New Alternatively Spliced Product of the Mouse Fas Ligand Gene. Blood, 1999, 94, 3456-3467.	1.4	27

#	Article	IF	Citations
181	Dexamethasone-Induced Thymocyte Apoptosis: Apoptotic Signal Involves the Sequential Activation of Phosphoinositide-Specific Phospholipase C, Acidic Sphingomyelinase, and Caspases. Blood, 1999, 93, 2282-2296.	1.4	168
182	TCR kappa, a new splicing of the murine TCR zeta gene locus, is modulated by glucocorticoid treatment. Molecular and Cellular Biochemistry, 1999, 195, 47-53.	3.1	4
183	Dexamethasone-Induced Thymocyte Apoptosis: Apoptotic Signal Involves the Sequential Activation of Phosphoinositide-Specific Phospholipase C, Acidic Sphingomyelinase, and Caspases. Blood, 1999, 93, 2282-2296.	1.4	4
184	Interleukin-6 (IL-6) Prevents Activation-Induced Cell Death: IL-2–Independent Inhibition of Fas/fasL Expression and Cell Death. Blood, 1998, 92, 4212-4219.	1.4	75
185	Interleukin-6 (IL-6) Prevents Activation-Induced Cell Death: IL-2–Independent Inhibition of Fas/fasL Expression and Cell Death. Blood, 1998, 92, 4212-4219.	1.4	10
186	Possible mechanisms involved in apoptosis of colon tumor cell lines induced by deoxycholic acid, shortâ€chain fatty acids, and their mixtures. Nutrition and Cancer, 1997, 28, 74-80.	2.0	31
187	A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6216-6221.	7.1	385
188	A New Dexamethasone-Induced Gene of the Leucine Zipper Family Protects T Lymphocytes from TCR/CD3-Activated Cell Death. Immunity, 1997, 7, 803-812.	14.3	408
189	Deoxycholic acid and SCFA-induced apoptosis in the human tumor cell-line HT-29 and possible mechanisms. Cancer Letters, 1997, 114, 97-99.	7.2	34
190	Apolipoprotein-E genotype in normal aging, age-associated memory impairment, Alzheimer's disease and vascular dementia patients. Neuroscience Letters, 1997, 231, 59-61.	2.1	30
191	CD2 Rescues T Cells From T-Cell Receptor/CD3 Apoptosis: A Role for the Fas/Fas-L System. Blood, 1997, 89, 3717-3726.	1.4	48
192	Short-Term Dexamethasone Treatment Modulates the Expression of the Murine TCRζ Gene Locus. Cellular Immunology, 1997, 178, 124-131.	3.0	7
193	Effect of dexamethasone on T-cell receptor/CD3 expression. Molecular and Cellular Biochemistry, 1997, 167, 135-144.	3.1	12
194	CD2 Rescues T Cells From T-Cell Receptor/CD3 Apoptosis: A Role for the Fas/Fas-L System. Blood, 1997, 89, 3717-3726.	1.4	4
195	Dexamethasone modulates CD2 expression. International Journal of Immunopharmacology, 1996, 18, 677-684.	1.1	0
196	T cell receptor \hat{I}^1 an alternatively spliced product of the T cell receptor \hat{I}^q gene. European Journal of Immunology, 1995, 25, 1405-1409.	2.9	13
197	Costimulation of CD3/TcR complex with either integrin or nonintegrin ligands protects CD4+allergen-specific T-cell clones from programmed cell death. Allergy: European Journal of Allergy and Clinical Immunology, 1995, 50, 677-682.	5.7	7
198	Anticancer drug toxicity via cytokine production: the hydroxyurea paradigm. Toxicology Letters, 1995, 82-83, 167-171.	0.8	4

#	Article	IF	Citations
199	The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in Jurkat T-leukemia cells. Leukemia Research, 1994, 18, 431-439.	0.8	217
200	Dexamethasone and interleukins modulate apoptosis of murine thymocytes and peripheral T-lymphocytes. Pharmacological Research, 1994, 30, 43-52.	7.1	26
201	Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells. European Journal of Cancer, 1994, 30, 1675-1682.	2.8	198
202	PMA inhibits NK generation, cytotoxic activity and NK-1.1 expression. International Journal of Immunopharmacology, 1993, 15, 11-17.	1.1	3
203	Interleukin-2 Induces Apoptosis in Mouse Thymocytes. Cellular Immunology, 1993, 146, 52-61.	3.0	40
204	Cellular stress and glucocorticoid hormones protect L929 mouse fibroblasts from tumor necrosis factor alpha cytotoxicity. Journal of Endocrinological Investigation, 1993, 16, 591-599.	3.3	31
205	Genistein inhibits tumour cell growth in vitro but enhances mitochondrial reduction of tetrazolium salts: A further pitfall in the use of the MTT assay for evaluating cell growth and survival. European Journal of Cancer, 1993, 29, 1573-1577.	2.8	146
206	Pidotimod Stimulates Natural Killer Cell Activity and Inhibits Thymocyte Cell Death. Immunopharmacology and Immunotoxicology, 1992, 14, 737-748.	2.4	22
207	Glucocorticoid-induced thymocyte apoptosis: Inhibition by interleukin-2 and interleukin-4. \hat{a} [*] †. Pharmacological Research, 1992, 25, 15-16.	7.1	7
208	Immunopharmacology of pidotimod: Effect on natural killer cell activity and thymocyte cell death. Pharmacological Research, 1992, 26, 154-155.	7.1	1
209	Glucocorticoid-induced apoptosis of natural killer cells and cytotoxic T lymphocytes. Pharmacological Research, 1992, 26, 26-27.	7.1	14
210	PMA-Mediated inhibition of IL-2-driven differentiation of NK cell. Pharmacological Research, 1992, 26, 184-185.	7.1	0
211	Heat shock induces apoptosis in mouse thymocytes and protects them from glucocorticoid-induced cell death. Cellular Immunology, 1992, 143, 348-356.	3.0	67
212	IL-2-dependent generation of natural killer cells from bone marrow: Role of MAC-1â^', NK1-1â^' precursors. Cellular Immunology, 1992, 141, 323-331.	3.0	13
213	Interleukins modulate glucocorticoid-induced thymocyte apoptosis. International Journal of Clinical and Laboratory Research, 1992, 21, 300-303.	1.0	21
214	A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. Journal of Immunological Methods, 1991, 139, 271-279.	1.4	4,314
215	Growth of murine natural killer cells from bone marrow in vitro: Role of TNF $\hat{I}\pm$ and IFN \hat{I}^3 . International Journal of Immunopharmacology, 1991, 13, 943-954.	1.1	5
216	Effect of interleukin-4 on interleukin-2-dependent generation of natural killer cells. Cellular Immunology, 1991, 136, 194-207.	3.0	7

#	Article	IF	CITATIONS
217	Ncitural Killer (NK) Cell Generation in Bone Marrow Cultures: Role of IL-1α. Immunopharmacology and Immunotoxicology, 1991, 13, 589-606.	2.4	2
218	Generation of NK (LAK) Activity by Treatment of Bone Marrow Transplanted Mice with Cytokines. , 1990, , 221-223.		0
219	Role of Cytokines in the Development of Natural Killer (NK) Cells: Bone Marrow Colonies with NK Cell Activity., 1990,, 258-260.		0
220	Role of interleukin-1, interleukin-2 and interleukin-4 in the generation of natural killer cells. European Journal of Pharmacology, 1990, 183, 625.	3.5	1
221	Effect of Biostim (RU 41.740) on natural killer cell generation from bone marrow precursors. International Journal of Immunopharmacology, 1989, 11, 77-82.	1.1	2
222	Defective natural killer cell activity in puerperal hyperprolactinemia. Journal of Reproductive Immunology, 1989, 15, 113-121.	1.9	10
223	In vitro proliferation of human large granular lymphocytes withv-raf/v-myc recombinant retrovirus. Experientia, 1988, 44, 1013-1015.	1.2	0
224	Role of interferons in natural killer cell generation from primitive bone marrow precursors. International Journal of Immunopharmacology, 1988, 10, 665-673.	1.1	7
225	Phenotypic and functional abnormalities of T lymphocytes in pathological hyperprolactinemia. Journal of Clinical Immunology, 1987, 7, 463-470.	3.8	25
226	Lymphokine-activated killer cell activity. Trends in Immunology, 1987, 8, 178-181.	7.5	229
227	Effect of in vivo administration of prostaglandins and interferon on natural killer activity and on B-16 melanoma growth in mice. Cellular Immunology, 1987, 106, 43-52.	3.0	10
228	In vivo treatment with recombinant interleukin-2 (IL-2) stimulates the differentiation of natural killer (NK) precursor cells., 1987 , $303-307$.		0
229	Low frequency of NK-cell progenitors and development of suppressor cells in IL-2-dependent cultures of spleen cells from low NK-reactive SJL/J mice. International Journal of Cancer, 1986, 38, 117-125.	5.1	5
230	Generation of mouse natural killer (NK) cell activity: Effect of interleukin-2 (IL-2) and interferon (IFN) on thein vivo development of natural killer cells from bone marrow (BM) progenitor cells. International Journal of Cancer, 1986, 38, 553-562.	5.1	27
231	Modulation of natural killer activity by thymosin alpha 1 and interferon. Cancer Immunology, Immunotherapy, 1985, 20, 189-92.	4.2	58
232	REGULATION OF MOUSE NK ACTIVITY11These studies were supported by "Progretto Finalizzato Oncologia,―contract no. 84.00762.44 (U.O.: Riccardi) C.N.R. Rome, Italy , 1985, , 421-431.		2
233	Increase of natural killer (NK) activity of mouse lymphocytes following in vitro treatment with cytosine-arabinoside. International Journal of Immunopharmacology, 1984, 6, 433-443.	1.1	1
234	Modulation of natural killer (NK) cell activity during FLV-P virus infection of mice. International Journal of Cancer, 1983, 31, 81-90.	5.1	13

#	Article	IF	Citations
235	Cloned lines of SJL/J spleen cells with cytotoxic reactivity. International Journal of Cancer, 1983, 31, 345-350.	5.1	3
236	C. PARVUM-INDUCED SUPPRESSOR CELLS FOR MOUSE NK ACTIVITY. , 1982, , 519-526.		6
237	REGULATION BY INTERFERON AND T CELLS OF IL-2-DEPENDENT GROWTH OF NK PROGENITOR CELLS: A LIMITING DILUTION ANALYSIS. , 1982, , 909-915.		7
238	In vivo reactivity of mouse natural killer (NK) cells against normal bone marrow cells. Cellular Immunology, 1981, 60, 136-143.	3.0	65
239	Suppression of natural killer (NK) activity by splenic adherent cells of low NK-reactive mice. International Journal of Cancer, 1981, 28, 811-818.	5.1	37
240	Cytotoxic effector cells with the characteristics of natural killer cells in the lungs of mice. International Journal of Cancer, 1980, 25, 153-158.	5.1	68
241	In vivo natural reactivity of mice against tumor cells. International Journal of Cancer, 1980, 25, 475-486.	5.1	166
242	Transplantation resistance of drug-treated hybrid or allogeneic mice against murine lymphomas. I. Immunopharmacology studies. International Journal of Cancer, 1980, 26, 819-829.	5.1	9
243	Suppression of activity of mouse natural killer (NK) cells by activated macrophages from mice treated with pyran copolymer. International Journal of Cancer, 1980, 26, 837-843.	5.1	62
244	Combined effects of antineoplastic agents and anti-lymphoma allograft reactions. European Journal of Cancer, 1980, 16, 23-33.	0.9	25
245	In Vivo or in Vitro Modulating Effects of Vincristine on the Generation of Allogeneic Cytotoxic Lymphocytes in Vitro. Immunopharmacology and Immunotoxicology, 1980, 2, 61-72.	0.8	7
246	INHIBITION AS WELL AS AUGMENTATION OF MOUSE NK ACTIVITY BY PYRAN COPOLYMER AND ADRIAMYCIN. , 1980, , 753-763.		10
247	Augmentation of natural killer activity by pyran copolymer in mice. International Journal of Cancer, 1979, 24, 656-661.	5.1	28
248	Activation of mouse macrophages by pyran copolymer and role in augmentation of natural killer activity. International Journal of Cancer, 1979, 24, 819-825.	5.1	33
249	Adriamycin-induced antitumor response in lethally irradiated mice. Immunopharmacology, 1979, 1, 211-220.	2.0	20
250	Natural Killer Cells: Characteristics and Regulation of Activity. Immunological Reviews, 1979, 44, 43-70.	6.0	589
251	GROWTH AND REJECTION PATTERNS OF MURINE LYMPHOMA CELLS ANTIGENICALLY ALTERED FOLLOWING DRUG TREATMENT IN VIVO. Transplantation, 1978, 25, 63-68.	1.0	21
252	Murine leukemia growth inhibition or enhancement following immunization with tumor cells antigenically altered by drug treatment. Pharmacological Research Communications, 1977, 9, 349-358.	0.2	3

#	Article	IF	CITATIONS
253	Rejection of drug-treated tumor cells in the peritoneal cavity of mice. Pharmacological Research Communications, 1975, 7, 387-393.	0.2	5
254	Control of the circadian rhythm of the body temperature in the rat. Life Sciences, 1974, 14, 2111-2119.	4.3	29