List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/203928/publications.pdf Version: 2024-02-01

ΜΗΛΧ ΤΙΟΗΝ

#	Article	IF	CITATIONS
1	Tubular Clay Nano-Straws in Ordered Mesoporous Particles Create Hierarchical Porosities Leading to Improved CO ₂ Uptake. Industrial & Engineering Chemistry Research, 2022, 61, 1694-1703.	3.7	4
2	Transformation of Lipid Vesicles into Micelles by Adding Nonionic Surfactants: Elucidating the Structural Pathway and the Intermediate Structures. Journal of Physical Chemistry B, 2022, 126, 2208-2216.	2.6	13
3	Hydrophobically modified chitosan biopolymer connects halloysite nanotubes at the oil-water interface as complementary pair for stabilizing oil droplets. Journal of Colloid and Interface Science, 2022, 620, 135-143.	9.4	10
4	Aggregationâ€Enhanced Photoluminescence and Photoacoustics of Atomically Precise Gold Nanoclusters in Lipid Nanodiscs (NANO ²). Advanced Functional Materials, 2021, 31, 2009750.	14.9	22
5	Hydrophobe Containing Polypeptoids Complex with Lipids and Induce Fusogenesis of Lipid Vesicles. Journal of Physical Chemistry B, 2021, 125, 3145-3152.	2.6	5
6	Spontaneous Formation of Stable Vesicles and Vesicle Gels in Polar Organic Solvents. Langmuir, 2021, 37, 7955-7965.	3.5	8
7	Using Microemulsion Phase Behavior as a Predictive Model for Lecithin–Tween 80 Marine Oil Dispersant Effectiveness. Langmuir, 2021, 37, 8115-8128.	3.5	2
8	Integrating Halloysite Nanostraws in Porous Catalyst Supports to Enhance Molecular Transport. ACS Applied Nano Materials, 2021, 4, 8455-8464.	5.0	5
9	One-Step Hydropyrolysis and Hydrotreating Tandem Reactions of <i>Miscanthus × giganteus</i> Using Ni Impregnated ZSM-5/MCM-41 Composites. Energy & Fuels, 2021, 35, 20117-20130.	5.1	5
10	Small Scale Physical and Bio-Chemical Processes Affecting the Transport of Oil after a Spill. International Oil Spill Conference Proceedings, 2021, 2021, .	0.1	0
11	Targeted and Stimulus-Responsive Delivery of Surfactant to the Oil–Water Interface for Applications in Oil Spill Remediation. ACS Applied Materials & Interfaces, 2020, 12, 1840-1849.	8.0	33
12	Clay Nanotube Liquid Marbles Enhanced with Inner Biofilm Formation for the Encapsulation and Storage of Bacteria at Room Temperature. ACS Applied Nano Materials, 2020, 3, 1263-1271.	5.0	27
13	A One-Step Facile Encapsulation of Zeolite Microcrystallites in Ordered Mesoporous Microspheres. Industrial & Engineering Chemistry Research, 2020, 59, 13923-13931.	3.7	5
14	A Nanocomposite of Halloysite/Surfactant/Wax to Inhibit Surfactant Adsorption onto Reservoir Rock Surfaces for Improved Oil Recovery. Energy & Fuels, 2020, 34, 8074-8084.	5.1	12
15	MCM-41/ZSM-5 composite particles for the catalytic fast pyrolysis of biomass. Applied Catalysis A: General, 2020, 602, 117727.	4.3	34
16	Tunable Friction Through Stimuli Responsive Hybrid Carbon Microspheres. Langmuir, 2019, 35, 15849-15854.	3.5	8
17	Biofilm Formation by Hydrocarbon-Degrading Marine Bacteria and Its Effects on Oil Dispersion. ACS Sustainable Chemistry and Engineering, 2019, 7, 14490-14499.	6.7	49
18	Investigation of Amphiphilic Polypeptoid-Functionalized Halloysite Nanotubes as Emulsion Stabilizer for Oil Spill Remediation. ACS Applied Materials & amp; Interfaces, 2019, 11, 27944-27953.	8.0	54

#	Article	IF	CITATIONS
19	Clusters of Nanoscale Liposomes Modulate the Release of Encapsulated Species and Mimic the Compartmentalization Intrinsic in Cell Structures. ACS Applied Nano Materials, 2019, 2, 7134-7143.	5.0	11
20	Stoppers and Skins on Clay Nanotubes Help Stabilize Oil-in-Water Emulsions and Modulate the Release of Encapsulated Surfactants. ACS Applied Nano Materials, 2019, 2, 3490-3500.	5.0	19
21	Insulin-Like Growth Factor-1–Loaded Polymeric Poly(Lactic-Co-Glycolic) Acid Microspheres Improved Erectile Function in a Rat Model of Bilateral Cavernous Nerve Injury. Journal of Sexual Medicine, 2019, 16, 383-393.	0.6	11
22	Amphiphilic Polypeptoids Rupture Vesicle Bilayers To Form Peptoid–Lipid Fragments Effective in Enhancing Hydrophobic Drug Delivery. Langmuir, 2019, 35, 15335-15343.	3.5	12
23	Crystallization-Driven Self-Assembly of Coil–Comb-Shaped Polypeptoid Block Copolymers: Solution Morphology and Self-Assembly Pathways. Macromolecules, 2019, 52, 8867-8877.	4.8	42
24	Effect of 2 Novel Sustained-release Drug Release Systems on Bleb Fibrosis: An In Vivo Trabeculectomy Study in a Rabbit Model. Journal of Glaucoma, 2019, 28, 512-518.	1.6	4
25	Does the Solvent in a Dispersant Impact the Efficiency of Crude-Oil Dispersion?. Langmuir, 2019, 35, 16630-16639.	3.5	9
26	Solution Self-Assemblies of Sequence-Defined Ionic Peptoid Block Copolymers. Journal of the American Chemical Society, 2018, 140, 4100-4109.	13.7	72
27	Microstructural characteristics of surfactant assembly into a gel-like mesophase for application as an oil spill dispersant. Journal of Colloid and Interface Science, 2018, 524, 279-288.	9.4	13
28	A Bottle-around-a-Ship Method To Generate Hollow Thin-Shelled Particles Containing Encapsulated Iron Species with Application to the Environmental Decontamination of Chlorinated Compounds. ACS Applied Materials & Interfaces, 2018, 10, 13542-13551.	8.0	7
29	Bacterial proliferation on clay nanotube Pickering emulsions for oil spill bioremediation. Colloids and Surfaces B: Biointerfaces, 2018, 164, 27-33.	5.0	71
30	Thermoresponsive Coatings on Hollow Particles with Mesoporous Shells Serve as Stimuli-Responsive Gates to Species Encapsulation and Release. Langmuir, 2018, 34, 14608-14616.	3.5	28
31	Engineered Clays as Sustainable Oil Dispersants in the Presence of Model Hydrocarbon Degrading Bacteria: The Role of Bacterial Sequestration and Biofilm Formation. ACS Sustainable Chemistry and Engineering, 2018, 6, 14143-14153.	6.7	29
32	Consortium for the Molecular Engineering of Dispersant Systems (C-MEDS). Marine Technology Society Journal, 2018, 52, 95-98.	0.4	0
33	Focused Ultrasound–Triggered Release of Tyrosine Kinase Inhibitor From Thermosensitive Liposomes for Treatment of Renal Cell Carcinoma. Journal of Pharmaceutical Sciences, 2017, 106, 1355-1362.	3.3	19
34	Amphiphilic Polypeptoids Serve as the Connective Glue to Transform Liposomes into Multilamellar Structures with Closely Spaced Bilayers. Langmuir, 2017, 33, 2780-2789.	3.5	16
35	Aggregation of cyclic polypeptoids bearing zwitterionic end-groups with attractive dipole–dipole and solvophobic interactions: a study by small-angle neutron scattering and molecular dynamics simulation. Physical Chemistry Chemical Physics, 2017, 19, 14388-14400.	2.8	10
36	Impact of the Charge Ratio on the In Vivo Immunogenicity of Lipoplexes. Pharmaceutical Research, 2017, 34, 1796-1804.	3.5	6

VIJAY T JOHN

#	Article	IF	CITATIONS
37	Environmental Remediation of Chlorinated Hydrocarbons Using Biopolymer Stabilized Iron Loaded Halloysite Nanotubes. ACS Sustainable Chemistry and Engineering, 2017, 5, 10976-10985.	6.7	15
38	Rapid fabrication of hollow and yolk–shell α-Fe ₂ O ₃ particles with applications to enhanced photo-Fenton reactions. RSC Advances, 2017, 7, 39049-39056.	3.6	10
39	Microstructure and rheology of particle stabilized emulsions: Effects of particle shape and inter-particle interactions. Journal of Colloid and Interface Science, 2017, 485, 11-17.	9.4	98
40	The Role of Dispersants in Oil Spill Remediation: Fundamental Concepts, Rationale for Use, Fate, and Transport Issues. Oceanography, 2016, 29, 108-117.	1.0	48
41	Facile synthesis, characterization and catalytic activity of nanoporous supports loaded with monometallic and bimetallic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 491, 57-61.	4.7	1
42	Ablative Focused Ultrasound Synergistically Enhances Thermally Triggered Chemotherapy for Prostate Cancer <i>in Vitro</i> . Molecular Pharmaceutics, 2016, 13, 3080-3090.	4.6	20
43	Hierarchical patterning of hydrogels by replica molding of impregnated breath figures leads to superoleophobicity. Nanoscale, 2016, 8, 18446-18453.	5.6	3
44	Hydrogel Inverse Replicas of Breath Figures Exhibit Superoleophobicity Due to Patterned Surface Roughness. Langmuir, 2016, 32, 1009-1017.	3.5	15
45	Polymer grafted hard carbon microspheres at an oil/water interface. Journal of Colloid and Interface Science, 2016, 470, 31-38.	9.4	4
46	The stability of green nanoparticles in increased pH and salinity for applications in oil spill-treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 493, 99-107.	4.7	32
47	Thermoreversible and Injectable ABC Polypeptoid Hydrogels: Controlling the Hydrogel Properties through Molecular Design. Chemistry of Materials, 2016, 28, 727-737.	6.7	70
48	Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions. Journal of Colloid and Interface Science, 2016, 463, 288-298.	9.4	51
49	Effect of Two Novel Sustained-Release Drug Delivery Systems on Bleb Fibrosis: An In Vivo Glaucoma Drainage Device Study in a Rabbit Model. Translational Vision Science and Technology, 2015, 4, 4.	2.2	28
50	Simulation Study of Hydrophobically Modified Chitosan as an Oil Dispersant Additive. Journal of Physical Chemistry B, 2015, 119, 6979-6990.	2.6	15
51	Spatially directed vesicle capture in the ordered pores of breath-figure polymer films. Soft Matter, 2015, 11, 5188-5191.	2.7	14
52	Tuning the Wettability of Halloysite Clay Nanotubes by Surface Carbonization for Optimal Emulsion Stabilization. Langmuir, 2015, 31, 13700-13707.	3.5	40
53	Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons. Frontiers of Environmental Science and Engineering, 2015, 9, 939-947.	6.0	9
54	Efficient dispersion of crude oil by blends of food-grade surfactants: Toward greener oil-spill treatments. Marine Pollution Bulletin, 2015, 101, 92-97.	5.0	34

#	Article	IF	CITATIONS
55	Comparison of Sorafenib-Loaded Poly (Lactic/Glycolic) Acid and DPPC Liposome Nanoparticles in the in Vitro Treatment of Renal Cell Carcinoma. Journal of Pharmaceutical Sciences, 2015, 104, 1187-1196.	3.3	50
56	Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals. Science Advances, 2015, 1, e1400265.	10.3	50
57	In Situ Assembly of Hydrophilic and Hydrophobic Nanoparticles at Oil–Water Interfaces as a Versatile Strategy To Form Stable Emulsions. ACS Applied Materials & Interfaces, 2015, 7, 21010-21014.	8.0	21
58	Surfactant-Loaded Halloysite Clay Nanotube Dispersants for Crude Oil Spill Remediation. Industrial & Engineering Chemistry Research, 2015, 54, 9328-9341.	3.7	91
59	Water Decontamination Using Iron and Iron Oxide Nanoparticles. , 2014, , 423-439.		2
60	Self-Assembling Gels of a Hydrophobically Modified Biopolymer. Materials Research Society Symposia Proceedings, 2014, 1622, 69-78.	0.1	0
61	A Novel Antiproliferative Drug Coating for Glaucoma Drainage Devices. Journal of Glaucoma, 2014, 23, 526-534.	1.6	37
62	The Combined Effect of Encapsulating Curcumin and C6 Ceramide in Liposomal Nanoparticles against Osteosarcoma. Molecular Pharmaceutics, 2014, 11, 417-427.	4.6	77
63	Nanotechnology applications in urology: a review. BJU International, 2014, 114, 653-660.	2.5	4
64	Release of Surfactant Cargo from Interfacially-Active Halloysite Clay Nanotubes for Oil Spill Remediation. Langmuir, 2014, 30, 13533-13541.	3.5	129
65	Liposomes tethered to a biopolymer film through the hydrophobic effect create a highly effective lubricating surface. Soft Matter, 2014, 10, 9226-9229.	2.7	12
66	Development and Characterization of a Novel, Antimicrobial, Sterile Hydrogel Dressing for Burn Wounds: Singleâ€6tep Production with Gamma Irradiation Creates Silver Nanoparticles and Radical Polymerization. Journal of Pharmaceutical Sciences, 2014, 103, 3244-3253.	3.3	45
67	Novel "Breath Figureâ€â€Based Synthetic PLGA Matrices for In Vitro Modeling of Mammary Morphogenesis and Assessing Chemotherapeutic Response. Advanced Healthcare Materials, 2014, 3, 703-713.	7.6	15
68	An Effective Dispersant for Oil Spills Based on Food-Grade Amphiphiles. Langmuir, 2014, 30, 9285-9294.	3.5	101
69	Expression of the Mannose Receptor CD206 in HIV and SIV Encephalitis: A Phenotypic Switch of Brain Perivascular Macrophages with Virus Infection. Journal of NeuroImmune Pharmacology, 2014, 9, 716-726.	4.1	42
70	Multifunctional Materials Containing Nanoscale Zerovalent Iron in Carbon Microspheres for the Environmentally Benign Remediation of Chlorinated Hydrocarbons. , 2014, , 407-422.		1
71	Enzymatic Synthesis: Nanostructured Polymers and Composites. , 2014, , 1409-1421.		0
72	Attachment of a Hydrophobically Modified Biopolymer at the Oil–Water Interface in the Treatment of Oil Spills. ACS Applied Materials & Amp; Interfaces, 2013, 5, 3572-3580.	8.0	97

#	Article	IF	CITATIONS
73	Oil Emulsification Using Surface-Tunable Carbon Black Particles. ACS Applied Materials & Interfaces, 2013, 5, 3094-3100.	8.0	94
74	Aggregation and transport of Brij surfactants in hydroxyethyl methacrylate hydrogels. Journal of Colloid and Interface Science, 2013, 407, 390-396.	9.4	4
75	Superparamagnetic Iron Oxide Nanoparticles with Variable Size and an Iron Oxidation State as Prospective Imaging Agents. Langmuir, 2013, 29, 710-716.	3.5	135
76	The Response of Carbon Black Stabilized Oil-in-Water Emulsions to the Addition of Surfactant Solutions. Langmuir, 2013, 29, 6790-6797.	3.5	65
77	Facile oneâ€pot method of initiator fixation for surfaceâ€initiated atom transfer radical polymerization on carbon hard spheres. Journal of Polymer Science Part A, 2013, 51, 3314-3322.	2.3	7
78	Lubrication Properties of Phospholipid Liposome Coated Silk Microspheres. Particle and Particle Systems Characterization, 2013, 30, 133-137.	2.3	7
79	In vitro degradation and release characteristics of spin coated thin films of PLGA with a "breath figure―morphology. Biomatter, 2012, 2, 77-86.	2.6	44
80	Magnetic TiO2–SiO2 hybrid hollow spheres with TiO2 nanofibers on the surface and their formation mechanism. Journal of Materials Chemistry, 2012, 22, 17476.	6.7	33
81	Highly Porous Acrylonitrile-Based Submicron Particles for UO22+ Absorption in an Immunosensor Assay. ACS Applied Materials & Interfaces, 2012, 4, 163-170.	8.0	40
82	Water-in-Trichloroethylene Emulsions Stabilized by Uniform Carbon Microspheres. Langmuir, 2012, 28, 1058-1063.	3.5	14
83	Synthesis of Submicrometer Hollow Particles with a Nanoscale Double-Layer Shell Structure. Langmuir, 2012, 28, 13783-13787.	3.5	14
84	Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 440-451.	3.3	258
85	Flexible Optics: Recent Developments in Molecular Gels. Angewandte Chemie - International Edition, 2012, 51, 1760-1762.	13.8	53
86	Carbon microspheres as network nodes in a novel biocompatible gel. Soft Matter, 2011, 7, 4170.	2.7	16
87	Modifying Metal Nanoparticle Placement on Carbon Supports Using an Aerosol-Based Process, with Application to the Environmental Remediation of Chlorinated Hydrocarbons. Langmuir, 2011, 27, 7854-7859.	3.5	33
88	Carbon Microspheres as Ball Bearings in Aqueous-Based Lubrication. ACS Applied Materials & Interfaces, 2011, 3, 2215-2218.	8.0	51
89	Marine Oil Fate: Knowledge Gaps, Basic Research, and Development Needs; A Perspective Based on the Deepwater Horizon Spill. Environmental Engineering Science, 2011, 28, 87-93.	1.6	80
90	Carbothermal Synthesis of Aerosol-Based Adsorptive-Reactive Iron–Carbon Particles for the Remediation of Chlorinated Hydrocarbons. Industrial & Engineering Chemistry Research, 2011, 50, 13021-13029.	3.7	31

#	Article	IF	CITATIONS
91	Multifunctional Ironâ^'Carbon Nanocomposites through an Aerosol-Based Process for the In Situ Remediation of Chlorinated Hydrocarbons. Environmental Science & Technology, 2011, 45, 1949-1954.	10.0	75
92	The Synthesis of Mesoporous TiO ₂ /SiO ₂ /Fe ₂ O ₃ Hybrid Particles Containing Micelle- Induced Macropores through an Aerosol Based Process. Langmuir, 2011, 27, 6252-6259.	3.5	47
93	Arsenic (V) removal with modifiable bulk and nano p(4-vinylpyridine)-based hydrogels: The effect of hydrogel sizes and quarternization agents. Desalination, 2011, 279, 344-352.	8.2	57
94	Improved dermal delivery of FITC–BSA using a combination of passive and active methods. Journal of Pharmaceutical Sciences, 2011, 100, 4804-4814.	3.3	9
95	Rod-like carbon nanostructures produced by the direct pyrolysis of α-cyclodextrin. Carbon, 2011, 49, 718-722.	10.3	33
96	Abstract 4227: Curcumin in cyclodextrin in liposome as a delivery vehicle against osteosarcoma. , 2011, , ,		1
97	Hydration Effects on Skin Microstructure as Probed by High-Resolution Cryo-Scanning Electron Microscopy and Mechanistic Implications to Enhanced Transcutaneous Delivery of Biomacromolecules. Journal of Pharmaceutical Sciences, 2010, 99, 730-740.	3.3	71
98	Colloidal drug carries from (sub)micron hyaluronic acid hydrogel particles with tunable properties for biomedical applications. Carbohydrate Polymers, 2010, 82, 997-1003.	10.2	41
99	Liposomes in Double-Emulsion Globules. Langmuir, 2010, 26, 3225-3231.	3.5	18
100	Nanostructured Multifunctional Materials for Environmental Remediation of Chlorinated Hydrocarbons. ACS Symposium Series, 2010, , 163-179.	0.5	1
101	Nanoscale Zerovalent Iron Supported on Uniform Carbon Microspheres for the In situ Remediation of Chlorinated Hydrocarbons. ACS Applied Materials & Interfaces, 2010, 2, 2854-2862.	8.0	83
102	Water Decontamination Using Iron and Iron Oxide Nanoparticles. , 2009, , 347-364.		16
103	Direct synthesis of ordered mesoporous polymer/carbon nanofilaments with controlled mesostructures. Journal of Porous Materials, 2009, 16, 315-319.	2.6	2
104	Surfactant-laden soft contact lenses for extended delivery of ophthalmic drugs. Biomaterials, 2009, 30, 867-878.	11.4	136
105	Multifunctional Colloidal Particles for in Situ Remediation of Chlorinated Hydrocarbons. Environmental Science & Technology, 2009, 43, 8616-8621.	10.0	53
106	Shear Induced Formation of Patterned Porous Titania with Applications to Photocatalysis. Langmuir, 2009, 25, 7586-7593.	3.5	30
107	Highly aspherical silica nanoshells by templating tubular liposomes. Soft Matter, 2009, 5, 3006.	2.7	8
108	Creation of a Drug-Coated Glaucoma Drainage Device Using Polymer Technology. JAMA Ophthalmology, 2009, 127, 448.	2.4	39

#	Article	IF	CITATIONS
109	Undulating Tubular Liposomes through Incorporation of a Synthetic Skin Ceramide into Phospholipid Bilayers. Langmuir, 2009, 25, 10422-10425.	3.5	24
110	Transport Characteristics of Nanoscale Functional Zerovalent Iron/Silica Composites for in Situ Remediation of Trichloroethylene. Environmental Science & Technology, 2008, 42, 8871-8876.	10.0	165
111	Surfactant Solubilization and the Direct Encapsulation of Interfacially Active Phenols in Mesoporous Silicas. Langmuir, 2008, 24, 1031-1036.	3.5	15
112	Temperature-Induced Protein Release from Water-in-Oil-in-Water Double Emulsions. Langmuir, 2008, 24, 7154-7160.	3.5	24
113	Reactivity Characteristics of Nanoscale Zerovalent Ironâ^'Silica Composites for Trichloroethylene Remediation. Environmental Science & Technology, 2008, 42, 4494-4499.	10.0	128
114	Cryo-Field Emission Scanning Electron Microscopy Imaging of a Rigid Surfactant Mesophase. Langmuir, 2008, 24, 10621-10624.	3.5	17
115	Surfactant-Templated Synthesis and Catalytic Properties of Patterned Nanoporous Titania Supports Loaded with Platinum Nanoparticles. Chemistry of Materials, 2008, 20, 5301-5306.	6.7	32
116	High-Resolution NMR Characterization of a Gel-like Surfactant Mesophase. Langmuir, 2008, 24, 9286-9294.	3.5	7
117	Directed Synthesis of Micro-Sized Nanoplatelets of Gold from a Chemically Active Mixed Surfactant Mesophase. Advances in Polymer Science, 2008, , 235-249.	0.8	2
118	Enzymatic Synthesis of Nanostructured Polymers and Composites. , 2008, , 1271-1283.		0
119	Surfactant Templating Effects on the Encapsulation of Iron Oxide Nanoparticles within Silica Microspheres. Langmuir, 2007, 23, 5143-5147.	3.5	57
120	Core–shell nanohydrogel structures as tunable delivery systems. Polymer, 2007, 48, 704-711.	3.8	68
121	Nucleation and Growth Characteristics of a Binary Low-Mass Organogel. Langmuir, 2006, 22, 7416-7420.	3.5	19
122	Inhibition of Cell Proliferation by Mitomycin C Incorporated into P(HEMA) Hydrogels. Journal of Glaucoma, 2006, 15, 291-298.	1.6	27
123	Control of Gas Hydrate Formation Using Surfactant Systems: Underlying Concepts and New Applications. Annals of the New York Academy of Sciences, 2006, 912, 515-526.	3.8	6
124	Microstructure evolution in aqueous solutions of cetyl trimethylammonium bromide (CTAB) and phenol derivatives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281, 246-253.	4.7	54
125	Rheological characterization of a charged cationic hydrogel network across the gelation boundary. Polymer, 2006, 47, 1124-1131.	3.8	57
126	Controlled release from a nanocarrier entrapped within a microcarrier. Journal of Colloid and Interface Science, 2006, 301, 617-623.	9.4	11

#	Article	IF	CITATIONS
127	Microgel, nanogel and hydrogel–hydrogel semi-IPN composites for biomedical applications: synthesis and characterization. Colloid and Polymer Science, 2006, 284, 1121-1129.	2.1	180
128	Mesoporous Carbon Nanocapsules from Enzymatically Polymerized Poly(4-ethylphenol) Confined in Silica Aerosol Particles. Advanced Materials, 2006, 18, 2735-2738.	21.0	25
129	Photopolymerization of Acrylamide Derivatives in Polyelectrolyte Microcapsules. Chemistry Letters, 2005, 34, 1536-1537.	1.3	9
130	Synthesis of mesoporous carbon using enzymatically polymerized polyphenolic precursor and simultaneously assembled silica template. Microporous and Mesoporous Materials, 2005, 85, 293-296.	4.4	7
131	Hierarchical Mesoporous Carbon/Silica Nanocomposites from Phenyl-Bridged Organosilane. Advanced Materials, 2005, 17, 704-707.	21.0	79
132	Urea and Thiourea Derivatives as Low Molecular-Mass Organogelators. Chemistry - A European Journal, 2005, 11, 3243-3254.	3.3	158
133	A simple extrusion method for the synthesis of aligned silica nanowires using the template of a rigid surfactant mesophase. Chemical Communications, 2005, , 4517.	4.1	9
134	31P and1H NMR as Probes of Domain Alignment in a Rigid Crystalline Surfactant Mesophase. Langmuir, 2005, 21, 3795-3801.	3.5	11
135	Use of a Self-Assembling Organogel as a Reverse Template in the Preparation of Imprinted Porous Polymer Films. Langmuir, 2005, 21, 9322-9326.	3.5	44
136	Silica-Templated Continuous Mesoporous Carbon Films by a Spin-Coating Technique. Advanced Materials, 2004, 16, 884-886.	21.0	69
137	Biocatalysis in the development of functional polymer–ceramic nanocomposites. Colloids and Surfaces B: Biointerfaces, 2004, 39, 143-150.	5.0	13
138	Mesoporous silica with la3d cubic structure and good thermal stability. Chemical Communications, 2004, , 682-683.	4.1	34
139	Shear-Induced Orientation of a Rigid Surfactant Mesophase. Langmuir, 2004, 20, 5693-5702.	3.5	19
140	Freeze Fracture Direct Imaging of a Viscous Surfactant Mesophase. Langmuir, 2004, 20, 11-15.	3.5	26
141	Shear-Induced Alignment and Nanowire Silica Synthesis in a Rigid Crystalline Surfactant Mesophase. Journal of the American Chemical Society, 2004, 126, 2276-2277.	13.7	27
142	Enzyme-Catalyzed Polymerization of Phenols within Polyelectrolyte Microcapsules. Macromolecules, 2004, 37, 4519-4524.	4.8	72
143	Structural Evolution in Cationic Micelles upon Incorporation of a Polar Organic Dopant. Langmuir, 2004, 20, 9931-9937.	3.5	50
144	Microcapsule Modification with Peroxidase-Catalyzed Phenol Polymerization. Biomacromolecules, 2004, 5, 914-921.	5.4	43

VIJAY T JOHN

#	Article	IF	CITATIONS
145	Structural Evolution of a Two-Component Organogel. Langmuir, 2004, 20, 7392-7398.	3.5	16
146	Phase Transition Dynamics and Microstructure Evolution in a Crystalline Surfactant Mesophase Using Time-Dependent Small-Angle Neutron Scattering. Langmuir, 2003, 19, 6329-6332.	3.5	6
147	Small Angle Neutron Scattering Study of Mixed AOT + Lecithin Reverse Micelles. Langmuir, 2002, 18, 8345-8349.	3.5	24
148	Spatial Compartmentalization of Nanoparticles into Strands of a Self-Assembled Organogel. Nano Letters, 2002, 2, 1037-1042.	9.1	50
149	Small Angle Neutron Scattering Study of Microstructural Transitions in a Surfactant-Based Gel Mesophase. Langmuir, 2002, 18, 624-632.	3.5	45
150	Morphology of CdS Nanocrystals Synthesized in a Mixed Surfactant System. Nano Letters, 2002, 2, 263-268.	9.1	207
151	Nanostructured Materials Synthesis in a Mixed Surfactant Mesophase. Journal of Dispersion Science and Technology, 2002, 23, 441-452.	2.4	9
152	Recent developments in materials synthesis in surfactant systems. Current Opinion in Colloid and Interface Science, 2002, 7, 288-295.	7.4	88
153	Nanostructured Materials Synthesis in a Mixed Surfactant Mesophase. Journal of Dispersion Science and Technology, 2002, 23, 441-452.	2.4	1
154	Microstructure Determination of AOT + Phenol Organogels Utilizing Small-Angle X-ray Scattering and Atomic Force Microscopy. Journal of the American Chemical Society, 2001, 123, 2414-2421.	13.7	110
155	Cobalt-ferrite nanoparticles: correlations between synthesis procedures, structural characteristics and magnetic properties. IEEE Transactions on Magnetics, 2001, 37, 2350-2352.	2.1	52
156	PEROXIDASE, HEMATIN, AND PEGYLATED-HEMATIN CATALYZED VINYL POLYMERIZATIONS IN WATER. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 1219-1230.	2.2	34
157	Structured materials syntheses in a self-assembled surfactant mesophase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 174, 275-281.	4.7	21
158	The use of organic templates to develop biomimetic chain structures of magnetic nanoparticles. Journal of Applied Physics, 2000, 87, 6211-6213.	2.5	1
159	Cobalt-ferrite nanoparticles: Structure, cation distributions, and magnetic properties. Journal of Applied Physics, 2000, 87, 6223-6225.	2.5	68
160	Magnetoresistance of a (γ-Fe2O3)80Ag20 nanocomposite prepared in reverse micelles. Journal of Applied Physics, 2000, 87, 7001-7003.	2.5	23
161	An Organogel Formed by the Addition of Selected Dihydroxynaphthalenes to AOT Inverse Micelles. Langmuir, 2000, 16, 3036-3041.	3.5	32
162	IN <i>AQUA</i> SYNTHESIS OF A HIGH MOLECULAR WEIGHT ARYLETHYNYLENE POLYMER EXHIBITING REVERSIBLE HYDROGEL PROPERTIES. Journal of Macromolecular Science - Pure and Applied Chemistry, 1999, 36, 971-980.	2.2	2

#	Article	IF	CITATIONS
163	Synthesis and magnetic properties of a novel ferrite organogel. Journal of Applied Physics, 1999, 85, 5965-5967.	2.5	52
164	Higher crystallinity superparamagnetic ferrites: Controlled synthesis in lecithin gels and magnetic properties. Journal of Applied Physics, 1999, 85, 5178-5180.	2.5	14
165	Aldehyde allylation. Green Chemistry, 1999, 1, 265-268.	9.0	10
166	Synthesis and reactivity of nanophase ferrites in reverse micellar solutions. Scripta Materialia, 1999, 12, 65-70.	0.5	48
167	Nanophase Magnetic Materials: Synthesis and Properties. Molecular Crystals and Liquid Crystals, 1999, 335, 423-442.	0.3	9
168	IN AQUA SYNTHESIS OF A HIGH MOLECULAR WEIGHT ARYLETHYNYLENE POLYMER EXHIBITING REVERSIBLE HYDROGEL PROPERTIES. Journal of Macromolecular Science - Pure and Applied Chemistry, 1999, 36, 971-980.	2.2	6
169	In aqua synthesis of a high molecular weight arylethynylene polymer with reversible hydrogel properties. Chemical Communications, 1998, , 1351-1352.	4.1	12
170	Magnetic properties of a series of ferrite nanoparticles synthesized in reverse micelles. IEEE Transactions on Magnetics, 1998, 34, 1111-1113.	2.1	105
171	The Interaction of Light with Rb0.73Cr5Te8 and Polymer/Nanoferrite Composites. Molecular Crystals and Liquid Crystals, 1997, 305, 095-108.	0.3	1
172	Ferrite synthesis in microstructured media: Template effects and magnetic properties. Journal of Applied Physics, 1997, 81, 4741-4743.	2.5	20
173	Palladium catalysed polymerization of aryl diodides with acetylene gas in aqueous medium: a novel synthesis of areneethynylene polymers and oligomers. Chemical Communications, 1997, , 1569-1570.	4.1	37
174	Unusual Luminescence Spectra and Decay Dynamics in Crystalline Supramolecular [(A18C6)4MBr4][TlBr4]2(A = Rb, K; M = 3d Element) Complexes. Inorganic Chemistry, 1997, 36, 5539-5547.	4.0	26
175	The Enzymatic Synthesis of Thiol-Containing Polymers to Prepare Polymerâ^ CdS Nanocomposites. Chemistry of Materials, 1997, 9, 1342-1347.	6.7	98
176	Polymer microsphere and polymer-ferrite nanocomposite preparation by precipitation from water-in-oil microemulsions. Colloid and Polymer Science, 1997, 275, 930-937.	2.1	14
177	Fluorescence quenching of CdS nanocrystallites in AOT water-in-oil microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 127, 39-46.	4.7	62
178	A spontaneous phase transition from reverse micelles to organogels due to surfactant interactions with specific benzenediols. Journal of Molecular Liquids, 1997, 72, 121-135.	4.9	22
179	Enzymatic Synthesis of Fluorescent Naphthol-Based Polymers. Macromolecules, 1996, 29, 6452-6460.	4.8	121
180	Polymer Precipitation Using a Micellar Nonsolvent:Â The Role of Surfactantâ^'Polymer Interactions and the Development of a Microencapsulation Technique. Industrial & Engineering Chemistry Research, 1996, 35, 3100-3107.	3.7	22

#	Article	IF	CITATIONS
181	Synthesis of Superparamagnetic Polymerâ^'Ferrite Composites Using Surfactant Microstructures. Chemistry of Materials, 1996, 8, 801-809.	6.7	108
182	Analysis of Mass Transfer in Arctic Plumes (Implications for Global Climate). Journal of Fluids Engineering, Transactions of the ASME, 1996, 118, 870-872.	1.5	0
183	The microstructure of polymers enzymatically synthesized in a self-assembling environment. Materials Science and Engineering C, 1996, 4, 161-168.	7.3	6
184	Substrate-induced stability of the lipase from candida cylindracea in reversed micelles. Biotechnology Letters, 1995, 17, 177-182.	2.2	8
185	Enzymatic polymerizations using surfactant microstructures and the preparation of polymer-ferrite composites. Applied Biochemistry and Biotechnology, 1995, 51-52, 241-252.	2.9	12
186	A combined chemical-enzymatic method to remove selected aromatics from aqueous streams. Applied Biochemistry and Biotechnology, 1995, 51-52, 649-660.	2.9	3
187	Microstructural Characterization of Novel Phenolic Organogels through High-Resolution NMR Spectroscopy. The Journal of Physical Chemistry, 1994, 98, 3809-3817.	2.9	65
188	EPR characterizations of ?-chymotrypsin active site dynamics in reversed micelles at enhanced gas pressures and after subjection to clathrate formation conditions. Biotechnology and Bioengineering, 1994, 43, 215-224.	3.3	21
189	Modifications of CdS nanoparticle characteristics through synthesis in reversed micelles and exposure to enhanced gas pressures and reduced temperatures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 82, 151-162.	4.7	14
190	The use of EPR spectroscopy under non-ambient conditions to characterize the consequences of clathrate hydrate formation in water-in-oil microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 92, 293-300.	4.7	4
191	New Directions in Hydrate Technology Applications to Biotechnology and Advanced Materials. Annals of the New York Academy of Sciences, 1994, 715, 468-480.	3.8	3
192	Intercalation in Novel Organogels with a "Stacked" Phenol Microstructure. Journal of the American Chemical Society, 1994, 116, 9464-9470.	13.7	82
193	Enzyme-Catalyzed Polymerization in Microstructured Fluid Media: The Synthesis and Characterization of Novel Biomolecular Materials. , 1994, , 613-620.		0
194	Catalytic and interfacial aspects of enzymatic polymer synthesis in reversed micellar systems. Biotechnology and Bioengineering, 1993, 41, 531-540.	3.3	102
195	Formation of novel organogels by the addition of phenols to AOT micelles in isooctane. The Journal of Physical Chemistry, 1993, 97, 11350-11353.	2.9	73
196	Characteristics of Lipase Catalysis During Ester Synthesis in Reversed Micellar Systems. Biocatalysis, 1991, 4, 253-264.	0.9	20
197	Pressurized gases in contact with liquid reversed micellar solutions — effects on micellar size and stability, and biotechnological applications. Journal of Supercritical Fluids, 1991, 4, 238-243.	3.2	8
198	Gas Hydrate Formation in Reversed Micelles. Applied Biochemistry and Biotechnology, 1991, 28-29, 843-853.	2.9	8

#	Article	IF	CITATIONS
199	Protein recovery from reversed micellar solutions through contact with a pressurized gas phase. Biotechnology Progress, 1991, 7, 43-48.	2.6	53
200	Characteristics of protein-containing reversed micelles subjected to clathrate hydrate formation conditions. The Journal of Physical Chemistry, 1991, 95, 1467-1471.	2.9	27
201	Lipase Catalysis and Its Applications. , 1991, , 193-217.		23
202	Modification of enzyme activity in reversed micelles through clathrate hydrate formation. Biotechnology Progress, 1990, 6, 465-471.	2.6	19
203	Production of cocoa butter-like fat from interesterification of vegetable oils. JAOCS, Journal of the American Oil Chemists' Society, 1990, 67, 832-834.	1.9	85
204	A kinetic analysis of competitive reaction in intrazeolitic media. Chemical Engineering Science, 1990, 45, 575-586.	3.8	4
205	Clathrate hydrate formation in reversed micellar solutions. The Journal of Physical Chemistry, 1989, 93, 8123-8126.	2.9	33
206	Coreactant-induced modifications of catalytic behavior in zeolitic systems. Industrial & Engineering Chemistry Research, 1989, 28, 1613-1618.	3.7	16
207	Interesterification selectivity in lipase catalyzed reactions of low molecular weight triglycerides. Biotechnology Letters, 1988, 10, 555-558.	2.2	32
208	Competitive reaction in intrazeolitic media. Industrial & Engineering Chemistry Research, 1988, 27, 401-409.	3.7	29
209	Generalized optimal flow rate policy for continuous stirred tank bioreactors with deactivating catalysts. Biotechnology and Bioengineering, 1987, 30, 1084-1087.	3.3	2
210	A generalized model for predicting equilibrium conditions for gas hydrates. AICHE Journal, 1985, 31, 252-259.	3.6	175
211	Langmuir constants for spherical and linear molecules in clathrate hydrates. Validity of the cell theory. The Journal of Physical Chemistry, 1985, 89, 3279-3285.	2.9	50
212	Thermodynamics of multicomponent hydrate forming mixtures. Fluid Phase Equilibria, 1983, 14, 353-361.	2.5	19
213	Formation of clathrate hydrates in hydrogen-rich gases. Industrial & Engineering Chemistry Process Design and Development, 1983, 22, 170-171.	0.6	27
214	Hydrates of methane + butane below the ice point. Journal of Chemical & Engineering Data, 1982, 27, 18-21.	1.9	23