
Morgan Fouesneau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2039031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A1.	5.1	6,364
2	The <i>Gaia</i> mission. Astronomy and Astrophysics, 2016, 595, A1.	5.1	4,509
3	<i>Gaia</i> Early Data Release 3. Astronomy and Astrophysics, 2021, 649, A1.	5.1	2,429
4	<i>Gaia</i> Data Release 1. Astronomy and Astrophysics, 2016, 595, A2.	5.1	1,590
5	Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2. Astronomical Journal, 2018, 156, 58.	4.7	1,446
6	Estimating Distances from Parallaxes. V. Geometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3. Astronomical Journal, 2021, 161, 147.	4.7	922
7	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A10.	5.1	638
8	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A8.	5.1	368
9	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A11.	5.1	323
10	Red giant masses and ages derived from carbon and nitrogen abundances. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3655-3670.	4.4	183
11	<i>Gaia</i> Early Data Release 3. Astronomy and Astrophysics, 2021, 649, A6.	5.1	175
12	The Pristine survey – I. Mining the Galaxy for the most metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2587-2604.	4.4	156
13	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A14.	5.1	140
14	Accounting for stochastic fluctuations when analysing the integrated light of star clusters. Astronomy and Astrophysics, 2010, 521, A22.	5.1	88
15	THE PANCHROMATIC <i>HUBBLE </i> ANDROMEDA TREASURY. XI. THE SPATIALLY RESOLVED RECENT STAR FORMATION HISTORY OF M31. Astrophysical Journal, 2015, 805, 183.	4.5	86
16	PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS. Astrophysical Journal, 2016, 827, 33.	4.5	84
17	The Galactic warp revealed by <i>Gaia</i> DR2 kinematics. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 481, L21-L25.	3.3	82
18	Panchromatic Hubble Andromeda Treasury. XVIII. The High-mass Truncation of the Star Cluster Mass Function. Astrophysical Journal, 2017, 839, 78.	4.5	75

Morgan Fouesneau

#	Article	IF	CITATIONS
19	Tracing the formation of the Milky Way through ultra metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2166-2180.	4.4	73
20	THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. VIII. A WIDE-AREA, HIGH-RESOLUTION MAP OF DUST EXTINCTION IN M31. Astrophysical Journal, 2015, 814, 3.	4.5	72
21	A RADIAL AGE GRADIENT IN THE GEOMETRICALLY THICK DISK OF THE MILKY WAY. Astrophysical Journal, 2016, 831, 139.	4.5	72
22	Galactic DoppelgÃ ¤ gers: The Chemical Similarity Among Field Stars and Among Stars with a Common Birth Origin. Astrophysical Journal, 2018, 853, 198.	4.5	65
23	PHAT STELLAR CLUSTER SURVEY. I. YEAR 1 CATALOG AND INTEGRATED PHOTOMETRY. Astrophysical Journal, 2012, 752, 95.	4.5	62
24	Galactic spiral structure revealed by <i>Gaia</i> EDR3. Astronomy and Astrophysics, 2021, 651, A104.	5.1	62
25	PHAT STELLAR CLUSTER SURVEY. II. ANDROMEDA PROJECT CLUSTER CATALOG. Astrophysical Journal, 2015, 802, 127.	4.5	60
26	<i>Gaia</i> Early Data Release 3. Astronomy and Astrophysics, 2021, 649, A8.	5.1	60
27	<i>Gaia</i> Early Data Release 3. Astronomy and Astrophysics, 2021, 649, A9.	5.1	55
28	THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. V. AGES AND MASSES OF THE YEAR 1 STELLAR CLUSTERS. Astrophysical Journal, 2014, 786, 117.	4.5	50
29	The Pristine survey IV: approaching the Galactic metallicity floor with the discovery of an ultra-metal-poor star. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3838-3852.	4.4	50
30	New stellar encounters discovered in the second <i>Gaia</i> data release. Astronomy and Astrophysics, 2018, 616, A37.	5.1	47
31	THE ACS NEARBY GALAXY SURVEY TREASURY. X. QUANTIFYING THE STAR CLUSTER FORMATION EFFICIENCY OF NEARBY DWARF GALAXIES. Astrophysical Journal, 2012, 751, 100.	4.5	46
32	A Gaia DR2 Mock Stellar Catalog. Publications of the Astronomical Society of the Pacific, 2018, 130, 074101.	3.1	46
33	The Pristine survey – III. Spectroscopic confirmation of an efficient search for extremely metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2963-2974.	4.4	45
34	Evidence of a dynamically evolving Galactic warp. Nature Astronomy, 2020, 4, 590-596.	10.1	45
35	Quasar and galaxy classification in Gaia Data Release 2. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5615-5633.	4.4	43
36	THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XV. THE BEAST: BAYESIAN EXTINCTION AND STELLAR TOOL*. Astrophysical Journal, 2016, 826, 104.	4.5	36

Morgan Fouesneau

#	Article	IF	CITATIONS
37	PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XII. MAPPING STELLAR METALLICITY DISTRIBUTIONS IN M31. Astronomical Journal, 2015, 150, 189.	4.7	32
38	Combined Effects of Rotation and Age Spreads on Extended Main-Sequence Turn Offs. Astrophysical Journal, 2019, 887, 199.	4.5	32
39	A Gaia Early DR3 Mock Stellar Catalog: Galactic Prior and Selection Function. Publications of the Astronomical Society of the Pacific, 2020, 132, 074501.	3.1	32
40	Inferring the three-dimensional distribution of dust in the Galaxy with a non-parametric method. Astronomy and Astrophysics, 2017, 598, A125.	5.1	29
41	Precise Ages of Field Stars from White Dwarf Companions. Astrophysical Journal, 2019, 870, 9.	4.5	25
42	An astronomical institute's perspective on meeting the challenges of the climate crisis. Nature Astronomy, 2020, 4, 812-815.	10.1	24
43	A stellar stream remnant of a globular cluster below the metallicity floor. Nature, 2022, 601, 45-48.	27.8	22
44	Mapping the Escape Fraction of Ionizing Photons Using Resolved Stars: A Much Higher Escape Fraction for NGC 4214. Astrophysical Journal, 2020, 902, 54.	4.5	21
45	Selection Functions in Astronomical Data Modeling, with the Space Density of White Dwarfs as a Worked Example. Astronomical Journal, 2021, 162, 142.	4.7	20
46	TESTING DENSITY WAVE THEORY WITH RESOLVED STELLAR POPULATIONS AROUND SPIRAL ARMS IN M81. Astrophysical Journal, 2015, 810, 9.	4.5	17
47	PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XIV. THE PERIOD–AGE RELATIONSHIP OF CEPHEID VARIABLES IN M31 STAR CLUSTERS. Astrophysical Journal, 2015, 813, 31.	4.5	16
48	A New Approach to Convective Core Overshooting: Probabilistic Constraints from Color–Magnitude Diagrams of LMC Clusters. Astrophysical Journal, 2017, 841, 69.	4.5	13
49	Three-dimensional dust mapping in the Orion complex, combining <i>Gaia</i> -TGAS, 2MASS, and WISE. Astronomy and Astrophysics, 2018, 616, A44.	5.1	13
50	THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVII. EXAMINING OBSCURED STAR FORMATION WITH SYNTHETIC ULTRAVIOLET FLUX MAPS IN M31*. Astrophysical Journal, 2017, 834, 70.	4.5	10
51	Three-dimensional dust density structure of the Orion, Cygnus X, Taurus, and Perseus star-forming regions. Astronomy and Astrophysics, 2022, 658, A166.	5.1	10
52	Astrophysical parameters from <i>Gaia</i> DR2, 2MASS, and AllWISE. Astronomy and Astrophysics, 2022, 662, A125.	5.1	9
53	Precise Ages of Field Stars from White Dwarf Companions in Gaia DR2. Astrophysical Journal, Supplement Series, 2021, 253, 58.	7.7	7
54	PHAT XX. AGB Stars and Other Cool Giants in M31 Star Clusters. Astrophysical Journal, 2020, 901, 19.	4.5	7

#	Article	IF	CITATIONS
55	Improving White Dwarfs as Chronometers with Gaia Parallaxes and Spectroscopic Metallicities. Astrophysical Journal, 2022, 929, 26.	4.5	7
56	Data-driven Stellar Models. Astrophysical Journal, 2021, 907, 57.	4.5	6
57	The Pristine survey – XVII. The C-19 stream is dynamically hot and more extended than previously thought. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1664-1671.	4.4	4
58	A catalog of 159,238 white dwarf ages. Proceedings of the International Astronomical Union, 2019, 15, 188-191.	0.0	0