
Lisa H Tostanoski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2038570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Passive transfer of Ad26.COV2.S-elicited IgG from humans attenuates SARS-CoV-2 disease in hamsters. Npj Vaccines, 2022, 7, 2.	6.0	2
2	Durability and expansion of neutralizing antibody breadth following Ad26.COV2.S vaccination of mice. Npj Vaccines, 2022, 7, 23.	6.0	6
3	SARS-CoV-2 receptor binding domain displayed on HBsAg virus–like particles elicits protective immunity in macaques. Science Advances, 2022, 8, eabl6015.	10.3	27
4	Reduced pathogenicity of the SARS-CoV-2 omicron variant in hamsters. Med, 2022, 3, 262-268.e4.	4.4	117
5	Defining the determinants of protection against SARS-CoV-2 infection and viral control in a dose-down Ad26.CoV2.S vaccine study in nonhuman primates. PLoS Biology, 2022, 20, e3001609.	5.6	14
6	Reduced SARS-CoV-2 disease outcomes in Syrian hamsters receiving immune sera: Quantitative image analysis in pathologic assessments. Veterinary Pathology, 2022, , 030098582210957.	1.7	2
7	Novel approaches for vaccine development. Cell, 2021, 184, 1589-1603.	28.9	145
8	Exploiting Rational Assembly to Map Distinct Roles of Regulatory Cues during Autoimmune Therapy. ACS Nano, 2021, 15, 4305-4320.	14.6	13
9	Immunogenicity of the Ad26.COV2.S Vaccine for COVID-19. JAMA - Journal of the American Medical Association, 2021, 325, 1535.	7.4	260
10	Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques. Nature, 2021, 596, 423-427.	27.8	40
11	Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature, 2021, 596, 268-272.	27.8	290
12	Low-dose Ad26.COV2.S protection against SARS-CoV-2 challenge in rhesus macaques. Cell, 2021, 184, 3467-3473.e11.	28.9	49
13	Correlates of Neutralization against SARS-CoV-2 Variants of Concern by Early Pandemic Sera. Journal of Virology, 2021, 95, e0040421.	3.4	34
14	Immunogenicity of COVID-19 mRNA Vaccines in Pregnant and Lactating Women. JAMA - Journal of the American Medical Association, 2021, 325, 2370.	7.4	307
15	Immunity elicited by natural infection or Ad26.COV2.S vaccination protects hamsters against SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj3789.	12.4	32
16	Prior infection with SARS-CoV-2 WA1/2020 partially protects rhesus macaques against reinfection with B.1.1.7 and B.1.351 variants. Science Translational Medicine, 2021, 13, eabj2641.	12.4	15
17	Protective Efficacy of Rhesus Adenovirus COVID-19 Vaccines against Mouse-Adapted SARS-CoV-2. Journal of Virology, 2021, 95, e0097421.	3.4	12
18	Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	68

LISA H TOSTANOSKI

#	Article	IF	CITATIONS
19	Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature, 2021, 590, 630-634.	27.8	995
20	Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 2020, 586, 583-588.	27.8	765
21	Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nature Medicine, 2020, 26, 1694-1700.	30.7	275
22	SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 2020, 369, 812-817.	12.6	789
23	DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science, 2020, 369, 806-811.	12.6	978
24	Adenovirus Vector-Based Vaccines Confer Maternal-Fetal Protection against Zika Virus Challenge in Pregnant IFN-αβRâ^'/â^' Mice. Cell Host and Microbe, 2019, 26, 591-600.e4.	11.0	26
25	Engineering release kinetics with polyelectrolyte multilayers to modulate TLR signaling and promote immune tolerance. Biomaterials Science, 2019, 7, 798-808.	5.4	16
26	Differential Regulation of T-cell Immunity and Tolerance by Stromal Laminin Expressed in the Lymph Node. Transplantation, 2019, 103, 2075-2089.	1.0	26
27	Advanced manufacturing of microdisk vaccines for uniform control of material properties and immune cell function. Biomaterials Science, 2018, 6, 115-124.	5.4	10
28	Low-dose controlled release of mTOR inhibitors maintains T cell plasticity and promotes central memory T cells. Journal of Controlled Release, 2017, 263, 151-161.	9.9	28
29	Controlled Release of Second Generation mTOR Inhibitors to Restrain Inflammation in Primary Immune Cells. AAPS Journal, 2017, 19, 1175-1185.	4.4	14
30	Engineering Immunological Tolerance Using Quantum Dots to Tune the Density of Selfâ€Antigen Display. Advanced Functional Materials, 2017, 27, 1700290.	14.9	67
31	Engineering self-assembled materials to study and direct immune function. Advanced Drug Delivery Reviews, 2017, 114, 60-78.	13.7	52
32	Polyplexes assembled from self-peptides and regulatory nucleic acids blunt toll-like receptor signaling to combat autoimmunity. Biomaterials, 2017, 118, 51-62.	11.4	52
33	<i>In Vivo</i> Expansion of Melanoma-Specific T Cells Using Microneedle Arrays Coated with Immune-Polyelectrolyte Multilayers. ACS Biomaterials Science and Engineering, 2017, 3, 195-205.	5.2	77
34	Assembly and Immunological Processing of Polyelectrolyte Multilayers Composed of Antigens and Adjuvants. ACS Applied Materials & Interfaces, 2016, 8, 18722-18731.	8.0	38
35	Design of Polyelectrolyte Multilayers to Promote Immunological Tolerance. ACS Nano, 2016, 10, 9334-9345.	14.6	68
36	Targeted Programming of the Lymph Node Environment Causes Evolution of Local and Systemic Immunity. Cellular and Molecular Bioengineering, 2016, 9, 418-432.	2.1	13

LISA H TOSTANOSKI

#	Article	IF	CITATIONS
37	Reprogramming the Local Lymph Node Microenvironment Promotes Tolerance that Is Systemic and Antigen Specific. Cell Reports, 2016, 16, 2940-2952.	6.4	127
38	Engineering tolerance using biomaterials to target and control antigen presenting cells. Discovery Medicine, 2016, 21, 403-10.	0.5	25
39	Polyelectrolyte Multilayers Assembled Entirely from Immune Signals on Gold Nanoparticle Templates Promote Antigen-Specific T Cell Response. ACS Nano, 2015, 9, 6465-6477.	14.6	134
40	Controlled delivery of a metabolic modulator promotes regulatory T cells and restrains autoimmunity. Journal of Controlled Release, 2015, 210, 169-178.	9.9	42
41	Modular Vaccine Design Using Carrier-Free Capsules Assembled from Polyionic Immune Signals. ACS Biomaterials Science and Engineering, 2015, 1, 1200-1205.	5.2	57
42	Intra-lymph Node Injection of Biodegradable Polymer Particles. Journal of Visualized Experiments, 2014, , e50984.	0.3	33