Evelien L J Smits

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2038467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward defining plasma treatment dose: The role of plasma treatment energy of pulsedâ€dielectric barrier discharge in dictating in vitro biological responses. Plasma Processes and Polymers, 2022, 19, e2100151.	3.0	8
2	The CD70-CD27 axis in oncology: the new kids on the block. Journal of Experimental and Clinical Cancer Research, 2022, 41, 12.	8.6	53
3	Preexisting memory CD4 T cells in na \tilde{A} ve individuals confer robust immunity upon hepatitis B vaccination. ELife, 2022, 11, .	6.0	11
4	Targeting hedgehog signaling in pancreatic ductal adenocarcinoma. , 2022, 236, 108107.		22
5	Cold Atmospheric Plasma Does Not Affect Stellate Cells Phenotype in Pancreatic Cancer Tissue in Ovo. International Journal of Molecular Sciences, 2022, 23, 1954.	4.1	15
6	Anti-Tumor Potency of Short-Term Interleukin-15 Dendritic Cells Is Potentiated by In Situ Silencing of Programmed-Death Ligands. Frontiers in Immunology, 2022, 13, 734256.	4.8	2
7	Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal?. Biomedicines, 2022, 10, 823.	3.2	9
8	Recent Advances of Immune Checkpoint Inhibition and Potential for (Combined) TIGIT Blockade as a New Strategy for Malignant Pleural Mesothelioma. Biomedicines, 2022, 10, 673.	3.2	4
9	The effect of local <scp>nonâ€ŧhermal</scp> plasma therapy on the <scp>cancerâ€ɨmmunity</scp> cycle in a melanoma mouse model. Bioengineering and Translational Medicine, 2022, 7, .	7.1	15
10	Radionuclide Imaging of Cytotoxic Immune Cell Responses to Anti-Cancer Immunotherapy. Biomedicines, 2022, 10, 1074.	3.2	3
11	Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncolmmunology, 2022, 11, .	4.6	54
12	New Implications of Patients' Sex in Today's Lung Cancer Management. Cancers, 2022, 14, 3399.	3.7	1
13	Patient-derived organoids as individual patient models for chemoradiation response prediction in gastrointestinal malignancies. Critical Reviews in Oncology/Hematology, 2021, 157, 103190.	4.4	5
14	The Search for an Interesting Partner to Combine with PD-L1 Blockade in Mesothelioma: Focus on TIM-3 and LAG-3. Cancers, 2021, 13, 282.	3.7	18
15	Oxidation of Innate Immune Checkpoint CD47 on Cancer Cells with Non-Thermal Plasma. Cancers, 2021, 13, 579.	3.7	26
16	Cancer-Associated Fibroblasts as a Common Orchestrator of Therapy Resistance in Lung and Pancreatic Cancer. Cancers, 2021, 13, 987.	3.7	38
17	Targeting the PD-1 Axis with Pembrolizumab for Recurrent or Metastatic Cancer of the Uterine Cervix: A Brief Update. International Journal of Molecular Sciences, 2021, 22, 1807.	4.1	8
18	NTRK Fusions in Sarcomas: Diagnostic Challenges and Clinical Aspects. Diagnostics, 2021, 11, 478.	2.6	27

#	Article	IF	CITATIONS
19	Physical plasma-derived oxidants sensitize pancreatic cancer cells to ferroptotic cell death. Free Radical Biology and Medicine, 2021, 166, 187-200.	2.9	24
20	Cold Atmospheric Plasma Increases Temozolomide Sensitivity of Three-Dimensional Glioblastoma Spheroids via Oxidative Stress-Mediated DNA Damage. Cancers, 2021, 13, 1780.	3.7	28
21	Macrophage miR-210 induction and metabolic reprogramming in response to pathogen interaction boost life-threatening inflammation. Science Advances, 2021, 7, .	10.3	26
22	Immunoglobin G/total antibody testing for SARS-CoV-2: A prospective cohort study of ambulatory patients and health care workers in two Belgian oncology units comparing three commercial tests. European Journal of Cancer, 2021, 148, 328-339.	2.8	14
23	Auranofin reveals therapeutic anticancer potential by triggering distinct molecular cell death mechanisms and innate immunity in mutant p53 non-small cell lung cancer. Redox Biology, 2021, 42, 101949.	9.0	63
24	Oxidative damage to hyaluronan–CD44 interactions as an underlying mechanism of action of oxidative stress-inducing cancer therapy. Redox Biology, 2021, 43, 101968.	9.0	41
25	Immune Checkpoint Inhibitory Therapy in Sarcomas: Is There Light at the End of the Tunnel?. Cancers, 2021, 13, 360.	3.7	25
26	Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma. Cells, 2021, 10, 2936.	4.1	35
27	The potential and controversy of targeting STAT family members in cancer. Seminars in Cancer Biology, 2020, 60, 41-56.	9.6	226
28	Cold Atmospheric Plasma Treatment for Pancreatic Cancer–The Importance of Pancreatic Stellate Cells. Cancers, 2020, 12, 2782.	3.7	20
29	Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects. Antioxidants, 2020, 9, 1188.	5.1	36
30	SARS-CoV-2 and cancer: Are they really partners in crime?. Cancer Treatment Reviews, 2020, 89, 102068.	7.7	60
31	Novel combination immunotherapy for pancreatic cancer: potent antiâ€tumor effects with CD40 agonist and interleukinâ€15 treatment. Clinical and Translational Immunology, 2020, 9, e1165.	3.8	26
32	Critical Evaluation of the Interaction of Reactive Oxygen and Nitrogen Species with Blood to Inform the Clinical Translation of Nonthermal Plasma Therapy. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	4.0	6
33	Cetuximab-induced natural killer cell cytotoxicity in head and neck squamous cell carcinoma cell lines: investigation of the role of cetuximab sensitivity and HPV status. British Journal of Cancer, 2020, 123, 752-761.	6.4	25
34	Clinically Relevant Chemotherapeutics Have the Ability to Induce Immunogenic Cell Death in Non-Small Cell Lung Cancer. Cells, 2020, 9, 1474.	4.1	37
35	New targets for therapy: antigen identification in adults with B-cell acute lymphoblastic leukaemia. Cancer Immunology, Immunotherapy, 2020, 69, 867-877.	4.2	3
36	Ribonucleic Acid Engineering of Dendritic Cells for Therapeutic Vaccination: Ready â€~N Able to Improve Clinical Outcome?. Cancers, 2020, 12, 299.	3.7	2

#	Article	IF	CITATIONS
37	Mass Spectrometry Imaging Reveals Neutrophil Defensins as Additional Biomarkers for Anti-PD-(L)1 Immunotherapy Response in NSCLC Patients. Cancers, 2020, 12, 863.	3.7	18
38	Uncovering the immune-modulating role of anti-RANKL therapy for cervical cancer: Preliminary results Journal of Clinical Oncology, 2020, 38, e18028-e18028.	1.6	0
39	Abstract 3371: Role of the epidermal growth factor receptor expression and internalization in cetuximab-induced antibody-dependent cellular cytotoxicity in head and neck squamous cell carcinoma. , 2020, , .		0
40	Abstract 2962: Molecular mechanisms underlying the sensitizing effect of mutant p53 protein expression for Auranofin treatment of NSCLC and PDAC cells. , 2020, , .		0
41	Abstract 2414: Immunogenic properties of chemotherapeutic agents in the treatment of non-small cell lung cancer. , 2020, , .		0
42	453â€Novel combination immunotherapy for boosting and priming immune responses in pancreatic cancer: strong anti-tumour effects with interleukin-15 and CD40 agonist treatment. , 2020, , .		0
43	Memory CD4+ T cell receptor repertoire data mining as a tool for identifying cytomegalovirus serostatus. Genes and Immunity, 2019, 20, 255-260.	4.1	19
44	CD56 Homodimerization and Participation in Anti-Tumor Immune Effector Cell Functioning: A Role for Interleukin-15. Cancers, 2019, 11, 1029.	3.7	7
45	Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells. Cancers, 2019, 11, 1597.	3.7	77
46	Screening a Broad Range of Solid and Haematological Tumour Types for CD70 Expression Using a Uniform IHC Methodology as Potential Patient Stratification Method. Cancers, 2019, 11, 1611.	3.7	23
47	Building a Bridge between Chemotherapy and Immunotherapy in Malignant Pleural Mesothelioma: Investigating the Effect of Chemotherapy on Immune Checkpoint Expression. International Journal of Molecular Sciences, 2019, 20, 4182.	4.1	11
48	Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment. Cancers, 2019, 11, 1287.	3.7	81
49	Desmoid tumors display a strong immune infiltration at the tumor margins and no PD-L1-driven immune suppression. Cancer Immunology, Immunotherapy, 2019, 68, 1573-1583.	4.2	15
50	Dendritic Cell-Based and Other Vaccination Strategies for Pediatric Cancer. Cancers, 2019, 11, 1396.	3.7	13
51	RANK-RANKL Signaling in Cancer of the Uterine Cervix: A Review. International Journal of Molecular Sciences, 2019, 20, 2183.	4.1	22
52	Nonâ€Thermal Plasma as a Unique Delivery System of Shortâ€Lived Reactive Oxygen and Nitrogen Species for Immunogenic Cell Death in Melanoma Cells. Advanced Science, 2019, 6, 1802062.	11.2	177
53	Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments. Cancers, 2019, 11, 1920.	3.7	56
54	RANK/RANKL signaling inhibition may improve the effectiveness of checkpoint blockade in cancer treatment. Critical Reviews in Oncology/Hematology, 2019, 133, 85-91.	4.4	57

#	Article	IF	CITATIONS
55	Abstract B192: CD56 participation in immune effector cell activation and tumor cell eradication: A role for interleukin-15. , 2019, , .		0
56	Abstract B137: Preclinical evaluation of a Wilms' tumor protein 1-targeted interleukin-15 dendritic cell vaccine: T-cell activity and batch production. Cancer Immunology Research, 2019, 7, B137-B137.	3.4	2
57	Unveiling a CD70-positive subset of cancer-associated fibroblasts marked by pro-migratory activity and thriving regulatory T cell accumulation. OncoImmunology, 2018, 7, e1440167.	4.6	33
58	Combining top-ranked immunotherapeutics in lung cancer. Lancet Oncology, The, 2018, 19, 592-594.	10.7	0
59	Natural killer cells and their therapeutic role in pancreatic cancer: A systematic review. , 2018, 189, 31-44.		37
60	Increased herpes zoster risk associated with poor HLA-A immediate early 62 protein (IE62) affinity. Immunogenetics, 2018, 70, 363-372.	2.4	8
61	Poly(I:C) primes primary human glioblastoma cells for an immune response invigorated by PD-L1 blockade. Oncolmmunology, 2018, 7, e1407899.	4.6	38
62	Vaccine and immune cell therapy in non-small cell lung cancer. Journal of Thoracic Disease, 2018, 10, S1602-S1614.	1.4	30
63	Reduction of Human Glioblastoma Spheroids Using Cold Atmospheric Plasma: The Combined Effect of Short- and Long-Lived Reactive Species. Cancers, 2018, 10, 394.	3.7	69
64	Efficient and Non-genotoxic RNA-Based Engineering of Human T Cells Using Tumor-Specific T Cell Receptors With Minimal TCR Mispairing. Frontiers in Immunology, 2018, 9, 2503.	4.8	29
65	BDCA1+CD14+ Immunosuppressive Cells in Cancer, a Potential Target?. Vaccines, 2018, 6, 65.	4.4	13
66	Transcriptome profiling in blood before and after hepatitis B vaccination shows significant differences in gene expression between responders and non-responders. Vaccine, 2018, 36, 6282-6289.	3.8	47
67	The role of the common gamma-chain family cytokines in γδT cell-based anti-cancer immunotherapy. Cytokine and Growth Factor Reviews, 2018, 41, 54-64.	7.2	16
68	Dendritic Cells and Programmed Death-1 Blockade: A Joint Venture to Combat Cancer. Frontiers in Immunology, 2018, 9, 394.	4.8	84
69	Interleukin-15-Cultured Dendritic Cells Enhance Anti-Tumor Gamma Delta T Cell Functions through IL-15 Secretion. Frontiers in Immunology, 2018, 9, 658.	4.8	38
70	Hypoxia-Induced Cisplatin Resistance in Non-Small Cell Lung Cancer Cells Is Mediated by HIF-11± and Mutant p53 and Can Be Overcome by Induction of Oxidative Stress. Cancers, 2018, 10, 126.	3.7	43
71	Altered CD4+ T cell immunity in nurses occupationally exposed to viral pathogens. Clinical and Experimental Immunology, 2018, 194, 192-204.	2.6	9
72	ldentification of survivin as a promising target for the immunotherapy of adult B-cell acute lymphoblastic leukemia. Oncotarget, 2018, 9, 3853-3866.	1.8	13

#	Article	IF	CITATIONS
73	Prognostic and predictive aspects of the tumor immune microenvironment and immune checkpoints in malignant pleural mesothelioma. Oncolmmunology, 2017, 6, e1261241.	4.6	67
74	Multidisciplinary study of the secondary immune response in grandparents re-exposed to chickenpox. Scientific Reports, 2017, 7, 1077.	3.3	28
75	OA02.07 Characterization of the Tumor Microenvironment and Investigation of Immune Checkpoint Expression in Malignant Pleural Mesothelioma. Journal of Thoracic Oncology, 2017, 12, S249-S250.	1.1	0
76	<scp>CD</scp> 70 and <scp>PD</scp> ‣1 in anaplastic thyroid cancer–Âpromising targets for immunotherapy. Histopathology, 2017, 71, 357-365.	2.9	47
77	Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood, 2017, 130, 1713-1721.	1.4	170
78	Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity. Scientific Reports, 2017, 7, 16478.	3.3	103
79	Monocyte-Derived Dendritic Cells with Silenced PD-1 Ligands and Transpresenting Interleukin-15 Stimulate Strong Tumor-Reactive T-cell Expansion. Cancer Immunology Research, 2017, 5, 710-715.	3.4	36
80	IL-15 receptor alpha as the magic wand to boost the success of IL-15 antitumor therapies: The upswing of IL-15 transpresentation. , 2017, 170, 73-79.		19
81	CD56 in the Immune System: More Than a Marker for Cytotoxicity?. Frontiers in Immunology, 2017, 8, 892.	4.8	239
82	Characterization of Interleukin-15-Transpresenting Dendritic Cells for Clinical Use. Journal of Immunology Research, 2017, 2017, 1-8.	2.2	11
83	Abstract 958: Blocking CD70+ cancer associated fibroblasts: Are we paving the way towards immunotherapy in colorectal cancer. Cancer Research, 2017, 77, 958-958.	0.9	2
84	Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. Journal of Clinical Investigation, 2017, 127, 3543-3556.	8.2	125
85	Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells. Oncotarget, 2017, 8, 13652-13665.	1.8	18
86	Interleukin-15 stimulates natural killer cell-mediated killing of both human pancreatic cancer and stellate cells. Oncotarget, 2017, 8, 56968-56979.	1.8	59
87	Preclinical data on the combination of cisplatin and anti-CD70 therapy in non-small cell lung cancer as an excellent match in the era of combination therapy. Oncotarget, 2017, 8, 74058-74067.	1.8	9
88	Abundant expression of TIM-3, LAG-3, PD-1 and PD-L1 as immunotherapy checkpoint targets in effusions of mesothelioma patients. Oncotarget, 2017, 8, 89722-89735.	1.8	43
89	Abstract 3715A: Effusions of mesothelioma patients: What's in it for immunotherapy. , 2017, , .		0
90	Interleukin-15 and Interleukin-15 Receptor α mRNA-engineered Dendritic Cells as Promising Candidates for Dendritic Cell-based Vaccination in Cancer Immunotherapy. Journal of Cancer Science & Therapy, 2016, 08, .	1.7	0

#	Article	IF	CITATIONS
91	Dendritic Cells as Vaccines: Key Regulators of Tolerance and Immunity. Mediators of Inflammation, 2016, 2016, 1-2.	3.0	4
92	Cold atmospheric plasma treatment of melanoma and glioblastoma cancer cells. Plasma Processes and Polymers, 2016, 13, 1195-1205.	3.0	57
93	Generation and Cryopreservation of Clinical Grade Wilms' Tumor 1 mRNA-Loaded Dendritic Cell Vaccines for Cancer Immunotherapy. Methods in Molecular Biology, 2016, 1393, 27-35.	0.9	6
94	Medical costs of treatment and survival of patients with acute myeloid leukemia in Belgium. Leukemia Research, 2016, 46, 26-29.	0.8	10
95	Human blood myeloid and plasmacytoid dendritic cells cross activate each other and synergize in inducing NK cell cytotoxicity. Oncolmmunology, 2016, 5, e1227902.	4.6	26
96	Interleukin-15 enhances the proliferation, stimulatory phenotype, and antitumor effector functions of human gamma delta T cells. Journal of Hematology and Oncology, 2016, 9, 101.	17.0	96
97	Expansion of a BDCA1+CD14+ Myeloid Cell Population in Melanoma Patients May Attenuate the Efficacy of Dendritic Cell Vaccines. Cancer Research, 2016, 76, 4332-4346.	0.9	93
98	Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials. , 2016, 158, 24-40.		158
99	Electroporation of Dicer-Substrate siRNA Duplexes Targeting Endogenous TCR Enhance Tumor Killing Activity of Wilms' Tumor 1 (WT1)-Specific TCR-Redirected Cytotoxic T Cells. Blood, 2016, 128, 813-813.	1.4	2
100	The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells. Oncotarget, 2016, 7, 73960-73970.	1.8	17
101	Abstract 4981: Cisplatin and anti-CD70 therapy: Ideal partners in crime against NSCLC. , 2016, , .		0
102	Abstract 258: Is P53 the up-and-coming predictive biomarker for volasertib treatment in NSCLC. , 2016, , .		0
103	Application of the pMHC Array to Characterise Tumour Antigen Specific T Cell Populations in Leukaemia Patients at Disease Diagnosis. PLoS ONE, 2015, 10, e0140483.	2.5	13
104	Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner. PLoS ONE, 2015, 10, e0123340.	2.5	47
105	Immune Checkpoint Modulation in Colorectal Cancer: What's New and What to Expect. Journal of Immunology Research, 2015, 2015, 1-16.	2.2	54
106	Induction of Cytomegalovirus-Specific T Cell Responses in Healthy Volunteers and Allogeneic Stem Cell Recipients Using Vaccination With Messenger RNA–Transfected Dendritic Cells. Transplantation, 2015, 99, 120-127.	1.0	36
107	Interleukin-15: New kid on the block for antitumor combination therapy. Cytokine and Growth Factor Reviews, 2015, 26, 15-24.	7.2	30
			-

108 CD70: An emerging target in cancer immunotherapy. , 2015, 155, 1-10.

#	Article	IF	CITATIONS
109	Engineering monocyte-derived dendritic cells to secrete interferon-α enhances their ability to promote adaptive and innate anti-tumor immune effector functions. Cancer Immunology, Immunotherapy, 2015, 64, 831-842.	4.2	27
110	Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacological Reviews, 2015, 67, 731-753.	16.0	129
111	Targeting immune checkpoints: New opportunity for mesothelioma treatment?. Cancer Treatment Reviews, 2015, 41, 914-924.	7.7	41
112	Generation of a cord blood-derived Wilms Tumor 1 dendritic cell vaccine for AML patients treated with allogeneic cord blood transplantation. Oncolmmunology, 2015, 4, e1023973.	4.6	26
113	Poly(I:C) as cancer vaccine adjuvant: Knocking on the door of medical breakthroughs. , 2015, 146, 120-131.		134
114	Unlocking the potential of CD70 as a novel immunotherapeutic target for non-small cell lung cancer. Oncotarget, 2015, 6, 13462-13475.	1.8	45
115	Transpresentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity. Oncotarget, 2015, 6, 44123-44133.	1.8	39
116	HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV â€positive tumour cells. Journal of Cellular and Molecular Medicine, 2014, 18, 1372-1380.	3.6	16
117	Influence of Frequent Infectious Exposures on General and Varicella-Zoster Virus-Specific Immune Responses in Pediatricians. Vaccine Journal, 2014, 21, 417-426.	3.1	26
118	Tumoricidal activity of human dendritic cells. Trends in Immunology, 2014, 35, 38-46.	6.8	62
119	Immunotherapy: is a minor god yet in the pantheon of treatments for lung cancer?. Expert Review of Anticancer Therapy, 2014, 14, 1173-1187.	2.4	25
120	Clinical use of dendritic cells for cancer therapy. Lancet Oncology, The, 2014, 15, e257-e267.	10.7	565
121	Cost Analysis of Immunotherapy Using Dendritic Cells for Acute Myeloid Leukemia Patients. Blood, 2014, 124, 1322-1322.	1.4	3
122	Vaccination with WT1 mRNA-Electroporated Dendritic Cells: Report of Clinical Outcome in 66 Cancer Patients. Blood, 2014, 124, 310-310.	1.4	5
123	Dendritic cell vaccination in malignant pleural mesothelioma: A phase I/II study Journal of Clinical Oncology, 2014, 32, 7583-7583.	1.6	10
124	Loading of Acute Myeloid Leukemia Cells with Poly(I:C) by Electroporation. Methods in Molecular Biology, 2014, 1139, 233-241.	0.9	0
125	Status of Active Specific Immunotherapy for Stage II, Stage III, and Resected Stage IV Colon Cancer. Current Colorectal Cancer Reports, 2013, 9, 380-390.	0.5	6
126	Creating a robust framework for the analysis of cryopreserved samples in quantitative immunological experiments. Journal of Immunological Methods, 2013, 392, 63-67.	1.4	4

#	Article	IF	CITATIONS
127	CD56 marks human dendritic cell subsets with cytotoxic potential. Oncolmmunology, 2013, 2, e23037.	4.6	29
128	Interleukin-15 dendritic cells as vaccine candidates for cancer immunotherapy. Human Vaccines and Immunotherapeutics, 2013, 9, 1956-1961.	3.3	28
129	Interferon Î \pm may be back on track to treat acute myeloid leukemia. Oncolmmunology, 2013, 2, e23619.	4.6	33
130	Identification of a Wilms' tumor 1-derived immunogenic CD4+ T-cell epitope that is recognized in the context of common Caucasian HLA-DR haplotypes. Leukemia, 2013, 27, 748-750.	7.2	8
131	Prevention Of Relapse In Acute Myeloid Leukemia By Dendritic Cell Vaccination: Report on a Phase II Study With 29 Patients. Blood, 2013, 122, 236-236.	1.4	6
132	NK Cells: Key to Success of DC-Based Cancer Vaccines?. Oncologist, 2012, 17, 1256-1270.	3.7	76
133	mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. Aids, 2012, 26, F1-F12.	2.2	88
134	Human plasmacytoid dendritic cells are equipped with antigen-presenting and tumoricidal capacities. Blood, 2012, 120, 3936-3944.	1.4	80
135	Dendritic cell vaccination in acute myeloid leukemia. Cytotherapy, 2012, 14, 647-656.	0.7	49
136	Natural killer cell immune escape in acute myeloid leukemia. Leukemia, 2012, 26, 2019-2026.	7.2	131
137	Sampling Site Matters When Counting Lymphocyte Subpopulations. PLoS ONE, 2012, 7, e41405.	2.5	2
138	Interleukin-15-Induced CD56+ Myeloid Dendritic Cells Combine Potent Tumor Antigen Presentation with Direct Tumoricidal Potential. PLoS ONE, 2012, 7, e51851.	2.5	48
139	Interferon-Î \pm in acute myeloid leukemia: an old drug revisited. Leukemia, 2011, 25, 739-748.	7.2	101
140	Poly(I:C) Enhances the Susceptibility of Leukemic Cells to NK Cell Cytotoxicity and Phagocytosis by DC. PLoS ONE, 2011, 6, e20952.	2.5	31
141	Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia. Cancer Immunology, Immunotherapy, 2011, 60, 757-769.	4.2	26
142	Exploring the Impact of Exposure to Primary Varicella in Children on Varicella-Zoster Virus Immunity of Parents. Viral Immunology, 2011, 24, 151-157.	1.3	32
143	Dendritic cells in the pathogenesis and treatment of human diseases: a Janus Bifrons?. Immunotherapy, 2011, 3, 1203-1222.	2.0	34
144	Dendritic cell vaccine therapy for acute myeloid leukemia: Questions and answers. Hum Vaccin, 2011, 7, 579-584.	2.4	30

#	Article	IF	CITATIONS
145	The Toll-like receptor 7/8 agonist resiquimod greatly increases the immunostimulatory capacity of human acute myeloid leukemia cells. Cancer Immunology, Immunotherapy, 2010, 59, 35-46.	4.2	51
146	The effect of apoptotic cells on virus-specific immune responses detected using IFN-gamma ELISPOT. Journal of Immunological Methods, 2010, 357, 51-54.	1.4	12
147	Induction of complete and molecular remissions in acute myeloid leukemia by Wilms' tumor 1 antigen-targeted dendritic cell vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13824-13829.	7.1	341
148	Viral infections following allogeneic stem cell transplantation: how to cure the cure?. Leukemia and Lymphoma, 2010, 51, 965-966.	1.3	4
149	WT1-Targeted Dendritic Cell Vaccination as A Post-Remission Treatment to Prevent Full Relapse In Acute Myeloid Leukemia. Blood, 2010, 116, 16-16.	1.4	6
150	Immunotherapy of Acute Myeloid Leukemia: Current Approaches. Oncologist, 2009, 14, 240-252.	3.7	47
151	Quantification of IFN-γ produced by human purified NK cells following tumor cell stimulation: Comparison of three IFN-γ assays. Journal of Immunological Methods, 2009, 350, 89-96.	1.4	12
152	Acute myeloid leukemic cell lines loaded with synthetic dsRNA trigger IFN-Î ³ secretion by human NK cells. Leukemia Research, 2009, 33, 539-546.	0.8	11
153	Dendritic Cell-Based Cancer Gene Therapy. Human Gene Therapy, 2009, 20, 1106-1118.	2.7	68
154	Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties. Journal of Translational Medicine, 2009, 7, 109.	4.4	74
155	Immunosuppression induced by immature dendritic cells is mediated by TGFâ€Î²/ILâ€10 doubleâ€positive CD4 ⁺ regulatory T cells. Journal of Cellular and Molecular Medicine, 2008, 12, 690-700.	3.6	75
156	The Use of TLR7 and TLR8 Ligands for the Enhancement of Cancer Immunotherapy. Oncologist, 2008, 13, 859-875.	3.7	192
157	Proinflammatory response of human leukemic cells to dsRNA transfection linked to activation of dendritic cells. Leukemia, 2007, 21, 1691-1699.	7.2	43
158	RNA-based gene transfer for adult stem cells and T cells. Leukemia, 2004, 18, 1898-1902.	7.2	56
159	Can cervical cancer screening be stopped at 50? The prevalence of HPV in elderly women. International Journal of Cancer, 2004, 108, 258-261.	5.1	39
160	RNA Electroporation as a New Gene Transfer Method in Hematopoietic Progenitor Cells, Mesenchymal Cells and Activated T-Cells Blood, 2004, 104, 5269-5269.	1.4	0
161	Dendritic Cells in Hematopoietic Stem Cell Transplantation. , 0, , .		0
162	NTRK Fusions in a Sarcomas Series: Pathology, Molecular and Clinical Aspects. Pathology and Oncology Research, 0, 28, .	1.9	5