Kunfeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2037487/publications.pdf

Version: 2024-02-01

71102 114465 4,794 145 41 63 citations h-index g-index papers 148 148 148 5245 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte. Materials, 2022, 15, 1157.	2.9	10
2	Highly Ordered TiO2 Nanotube Arrays with Engineered Electrochemical Energy Storage Performances. Materials, 2021, 14, 510.	2.9	13
3	Temperature-dependent crystallization of Cu ₂ O rhombic dodecahedra. CrystEngComm, 2021, 23, 7970-7977.	2.6	6
4	Highâ€Performance Quasiâ€Solidâ€State Naâ€Air Battery via Gel Cathode by Confining Moisture. Advanced Functional Materials, 2021, 31, 2011151.	14.9	23
5	Colloidal to micrometer-sized iron oxides and oxyhydroxides as anode materials for batteries and pseudocapacitors: Electrochemical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126232.	4.7	4
6	Crystallization design of multicale electrode materials forelectrochemical energy storage. Scientia Sinica Chimica, 2021, 51, 742-750.	0.4	0
7	Rapid synthesis of α-Sn(HPO4)2·H2O by microwave-hydrothermal process. Ceramics International, 2021, 47, 16303-16308.	4.8	0
8	Multiscale Investigation into Chemically Stable NASICON Solid Electrolyte in Acidic Solutions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33262-33271.	8.0	10
9	Fast growth of cerium-doped lutetium yttrium orthosilicate single crystals and their scintillation properties. Journal of Rare Earths, 2021, 39, 1527-1532.	4.8	5
10	Microstructure and defect characteristics of lithium niobate with different Li concentrations. Inorganic Chemistry Frontiers, 2021, 8, 4006-4013.	6.0	18
11	State of the Art in Crystallization of LiNbO3 and Their Applications. Molecules, 2021, 26, 7044.	3.8	27
12	Perspective on Micro-Supercapacitors. Frontiers in Chemistry, 2021, 9, 807500.	3.6	14
13	Toward materials-by-design: achieving functional materials with physical and chemical effects. Nanotechnology, 2020, 31, 024002.	2.6	3
14	La ³⁺ :Ni–Cl oxyhydroxide gels with enhanced electroactivity as positive materials for hybrid supercapacitors. Dalton Transactions, 2020, 49, 1107-1115.	3.3	8
15	Highly dispersed Co nanoparticles decorated on a N-doped defective carbon nano-framework for a hybrid Na–air battery. Dalton Transactions, 2020, 49, 1811-1821.	3.3	43
16	Facile Fabrication of Ga 2 O 3 Nanorods for Photoelectrochemical Water Splitting. ChemNanoMat, 2020, 6, 208-211.	2.8	8
17	Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology, 2020, 31, 132003.	2.6	145
18	Facile synthesis, characterization and electrochemical performance of nickel oxide nanoparticles prepared by thermal decomposition. Scripta Materialia, 2020, 181, 53-57.	5.2	10

#	Article	IF	CITATIONS
19	Nanocrystalline coatings and their electrochemical energy storage applications. Functional Materials Letters, 2020, 13, 2030001.	1.2	4
20	Garnet-type solid-state electrolytes and interfaces in all-solid-state lithium batteries: progress and perspective. Applied Materials Today, 2020, 20, 100750.	4.3	17
21	Design strategies toward achieving high-performance CoMoO4@Co1.62Mo6S8 electrode materials. Materials Today Physics, 2020, 13, 100197.	6.0	38
22	Li-ion battery studies on nickel oxide nanoparticles prepared by facile route calcination. Polyhedron, 2020, 179, 114360.	2.2	3
23	Sulfurâ€Induced Interface Engineering of Hybrid NiCo ₂ O ₄ @NiMo ₂ S ₄ Structure for Overall Water Splitting and Flexible Hybrid Energy Storage. Advanced Materials Interfaces, 2019, 6, 1901308.	3.7	130
24	Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La ³⁺ intercalation. Journal of Materials Chemistry A, 2019, 7, 22079-22083.	10.3	116
25	Engineering PPy decorated MnCo ₂ O ₄ urchins for quasi-solid-state hybrid capacitors. CrystEngComm, 2019, 21, 1600-1606.	2.6	48
26	Active La–Nb–O compounds for fast lithium-ion energy storage. Tungsten, 2019, 1, 287-296.	4.8	21
27	How to efficiently utilize electrode materials in supercapattery?. Functional Materials Letters, 2019, 12, 1830005.	1.2	15
28	Colloidal supercapattery. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2019, 49, 175-181.	0.5	5
29	Novel inorganic tin phosphate gel: multifunctional material. Chemical Communications, 2018, 54, 2682-2685.	4.1	12
30	Microwave-Irradiation-Assisted Combustion toward Modified Graphite as Lithium Ion Battery Anode. ACS Applied Materials & Diterfaces, 2018, 10, 909-914.	8.0	53
31	MOF-Derived Hollow Co ₃ S ₄ Quasi-polyhedron/MWCNT Nanocomposites as Electrodes for Advanced Lithium Ion Batteries and Supercapacitors. ACS Applied Energy Materials, 2018, 1, 402-410.	5.1	69
32	A liquid anode for rechargeable sodium-air batteries with low voltage gap and high safety. Nano Energy, 2018, 49, 574-579.	16.0	57
33	A Flexible and Ultrahigh Energy Density Capacitor via Enhancing Surface/Interface of Carbon Cloth Supported Colloids. Advanced Energy Materials, 2018, 8, 1703329.	19.5	61
34	Colloidal Supercapattery: Redox Ions in Electrode and Electrolyte. Chemical Record, 2018, 18, 282-292.	5.8	36
35	Colloidal paradigm in supercapattery electrode systems. Nanotechnology, 2018, 29, 024003.	2.6	29
36	Metal organic framework derived CoFe@N-doped carbon/reduced graphene sheets for enhanced oxygen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 1962-1966.	6.0	34

3

#	Article	lF	Citations
37	Novel High-Energy-Density Rechargeable Hybrid Sodium–Air Cell with Acidic Electrolyte. ACS Applied Materials & Company: Interfaces, 2018, 10, 23748-23756.	8.0	22
38	Porous α-Fe2O3@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances. Nanomaterials, 2018, 8, 487.	4.1	27
39	Advanced Flame Retardant Magnesium-Based Materials: System Optimization Toward Enhanced Performance of Thermoplastic Elastomer. Science of Advanced Materials, 2018, 10, 1431-1437.	0.7	2
40	From graphite-clay composites to graphene electrode materials: In-situ electrochemical oxidation and functionalization. Materials Research Bulletin, 2017, 96, 281-285.	5.2	22
41	Crystallization of transition metal oxides within 12 seconds. CrystEngComm, 2017, 19, 1230-1238.	2.6	27
42	Multiple Functional Biomassâ€Derived Activated Carbon Materials for Aqueous Supercapacitors, Lithiumâ€lon Capacitors and Lithiumâ€sulfur Batteries. Chinese Journal of Chemistry, 2017, 35, 861-866.	4.9	32
43	Dual–phase Spinel MnCo 2 O 4 Nanocrystals with Nitrogen-doped Reduced Graphene Oxide as Potential Catalyst for Hybrid Na–Air Batteries. Electrochimica Acta, 2017, 244, 222-229.	5.2	52
44	SURFACE–INTERFACE REACTION OF SUPERCAPACITOR ELECTRODE MATERIALS. Surface Review and Letters, 2017, 24, 1730005.	1.1	10
45	Nanofabrication strategies for advanced electrode materials. Nanofabrication, 2017, 3, 1-15.	1.1	4
46	Environment-friendly, flame retardant thermoplastic elastomer–magnesium hydroxide composites. Functional Materials Letters, 2017, 10, 1750042.	1,2	16
47	Nanoclay assisted electrochemical exfoliation of pencil core to high conductive graphene thin-film electrode. Journal of Colloid and Interface Science, 2017, 487, 156-161.	9.4	64
48	Morphology Dependent Supercapacitance of Nanostructured NiCo 2 O 4 on Graphitic Carbon Nitride. Electrochimica Acta, 2016, 200, 239-246.	5.2	51
49	Architecture engineering of supercapacitor electrode materials. Functional Materials Letters, 2016, 09, 1640001.	1.2	21
50	Materials chemistry toward electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 7522-7537.	10.3	140
51	In situ electrochemical activation of Ni-based colloids from an NiCl ₂ electrode and their advanced energy storage performance. Nanoscale, 2016, 8, 17090-17095.	5.6	28
52	Phase Transformation of Ce ³⁺ -Doped MnO ₂ for Pseudocapacitive Electrode Materials. Journal of Physical Chemistry C, 2016, 120, 20077-20081.	3.1	72
53	High Energy Density Hybrid Supercapacitor: In-Situ Functionalization of Vanadium-Based Colloidal Cathode. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29522-29528.	8.0	42
54	Colloidal supercapacitor electrode materials. Materials Research Bulletin, 2016, 83, 201-206.	5 . 2	34

#	Article	IF	Citations
55	Structural design of graphene for use in electrochemical energy storage devices. Chemical Society Reviews, 2015, 44, 6230-6257.	38.1	389
56	Rare earth and transitional metal colloidal supercapacitors. Science China Technological Sciences, 2015, 58, 1768-1778.	4.0	48
57	A colloidal pseudocapacitor: Direct use of Fe(NO3)3 in electrode can lead to a high performance alkaline supercapacitor system. Journal of Colloid and Interface Science, 2015, 444, 49-57.	9.4	29
58	In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO2. Journal of Colloid and Interface Science, 2015, 446, 77-83.	9.4	74
59	Faceted Cu ₂ O structures with enhanced Li-ion battery anode performances. CrystEngComm, 2015, 17, 2110-2117.	2.6	69
60	Hydrothermal route to crystallization of FeOOH nanorods via FeCl $<$ sub $>$ 3 $<$ /sub $>$ Â \cdot 6H $<$ sub $>$ 2 $<$ /sub $>$ O: effect of Fe $<$ sup $>$ 3+ $<$ /sup $>$ concentration on pseudocapacitance of iron-based materials. CrystEngComm, 2015, 17, 1906-1910.	2.6	59
61	Colloidal pseudocapacitor: Nanoscale aggregation of Mn colloids from MnCl2 under alkaline condition. Journal of Power Sources, 2015, 279, 365-371.	7.8	39
62	Ethylenediamine-assisted crystallization of Fe ₂ O ₃ microspindles with controllable size and their pseudocapacitance performance. CrystEngComm, 2015, 17, 1521-1525.	2.6	39
63	Crystallization of FeOOH via iron salts: an anion-chemoaffinity controlled hydrolysis toward high performance inorganic pseudocapacitor materials. CrystEngComm, 2015, 17, 1917-1922.	2.6	45
64	Synthesis of spinel LiMn2O4 cathode material by a modified solid state reaction. Functional Materials Letters, 2015, 08, 1540002.	1.2	5
65	Searching for electrode materials with high electrochemical reactivity. Journal of Materiomics, 2015, 1, 170-187.	5.7	27
66	Role of Hydrothermal parameters on phase purity of orthorhombic LiMnO2 for use as cathode in Li ion battery. Ceramics International, 2015, 41, 6729-6733.	4.8	17
67	Room temperature reduction and hydrolysis of FeCl3â«6H2O on self-sacrifice microscale Cu2O octahedron template: A mild chemical synthesis of pseudocapacitor electrode materials. Functional Materials Letters, 2015, 08, 1550047.	1.2	1
68	Composition Design Upon Iron Element Toward Supercapacitor Electrode Materials. Materials Focus, 2015, 4, 78-80.	0.4	34
69	Applying Cerium to High Performance Supercapacitors. Materials Focus, 2015, 4, 81-83.	0.4	6
70	Pseudocapacitors Go to Nanoscale for Performance Enhancement. Materials Focus, 2015, 4, 62-65.	0.4	0
71	Nanolayered tin phosphate: a remarkably selective Cs ion sieve for acidic waste solutions. Chemical Communications, 2015, 51, 15661-15664.	4.1	14
72	Beyond graphene: materials chemistry toward high performance inorganic functional materials. Journal of Materials Chemistry A, 2015, 3, 2441-2453.	10.3	69

#	Article	IF	CITATIONS
73	A binary A _x B _{1â^'x} ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in situ electric field assisted coprecipitation. Nanoscale, 2015, 7, 1161-1166.	5.6	45
74	Carbon with ultrahigh capacitance when graphene paper meets K $<$ sub $>$ 3 $<$ /sub $>$ Fe(CN) $<$ sub $>$ 6 $<$ /sub $>$. Nanoscale, 2015, 7, 432-439.	5.6	99
75	Beyond theoretical capacity in Cu-based integrated anode: Insight into the structural evolution of CuO. Journal of Power Sources, 2015, 275, 136-143.	7.8	39
76	Morphology engineering of high performance binary oxide electrodes. Physical Chemistry Chemical Physics, 2015, 17, 732-750.	2.8	95
77	Nanomaterials and Electrochemical Reactivities: Nanoscale Fe-Based Electrode Materials Toward High Performance Energy Storage System. Reviews in Nanoscience and Nanotechnology, 2015, 4, 50-66.	0.4	1
78	Materials Design Towards High Performance Cu-Based Electrodes for Electrochemical Energy Storage Devices. Science of Advanced Materials, 2015, 7, 2037-2052.	0.7	7
79	åŒ-å¦å应和结晶控å^¶çš"电åŒ-å¦å,¨èƒ½ç"µæžææ-™. Zhongguo Kexue Jishu Kexue/Scientia Sinica	Te chs olog	rica,12015, 4
80	LiMn2O4-based materials as anodes for lithium-ion battery. Functional Materials Letters, 2014, 07, 1350070.	1.2	12
81	Anode performances of mixed LiMn ₂ O ₄ and carbon black toward lithium-ion battery. Functional Materials Letters, 2014, 07, 1450017.	1.2	15
82	Enhancing the Electrochemical Performance of the LiMn $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$ Hollow Microsphere Cathode with a LiNi $<$ sub $>$ 0.5 $<$ /sub $>$ Mn $<$ sub $>$ 1.5 $<$ /sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$ Coated Layer. Chemistry - A European Journal, 2014, 20, 824-830.	3.3	53
83	Electrochemically Stabilized Porous Nickel Foam as Current Collector and Counter Electrode in Alkaline Electrolyte for Supercapacitor. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 50-55.	0.3	13
84	High Surface Area Activated Carbon Synthesized from Bio-Based Material for Supercapacitor Application. Nanoscience and Nanotechnology Letters, 2014, 6, 997-1000.	0.4	15
85	Fast Preparation of Ultrafine CeO ₂ Nanoparticles. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 18-22.	0.3	2
86	Methanol Solvothermal Route to Size-Controllable Synthesis of CeO ₂ with Electrochemical Performances. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 71-75.	0.3	2
87	A rapid combustion route to synthesize high-performance nanocrystalline cathode materials for Li-ion batteries. CrystEngComm, 2014, 16, 10969-10976.	2.6	15
88	Cu -based materials as high-performance electrodes toward electrochemical energy storage. Functional Materials Letters, 2014, 07, 1430001.	1.2	22
89	CoCl ₂ Designed as Excellent Pseudocapacitor Electrode Materials. ACS Sustainable Chemistry and Engineering, 2014, 2, 440-444.	6.7	67
90	Water-soluble inorganic salt with ultrahigh specific capacitance: Ce(NO3)3 can be designed as excellent pseudocapacitor electrode. Journal of Colloid and Interface Science, 2014, 416, 172-176.	9.4	52

#	Article	IF	CITATIONS
91	Microwave-hydrothermal synthesis of Fe-based materials for lithium-ion batteries and supercapacitors. Ceramics International, 2014, 40, 2877-2884.	4.8	23
92	Polymorphic crystallization of Cu ₂ O compound. CrystEngComm, 2014, 16, 5257-5267.	2.6	47
93	Crystallization of Fe3+ in an alkaline aqueous pseudocapacitor system. CrystEngComm, 2014, 16, 6707.	2.6	27
94	Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper. CrystEngComm, 2014, 16, 7771.	2.6	47
95	Ex situ identification of the Cu+ long-range diffusion path of a Cu-based anode for lithium ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 11168.	2.8	20
96	Functionality of Fe(NO3)3 salts as both positive and negative pseudocapacitor electrodes in alkaline aqueous electrolyte. Electrochimica Acta, 2014, 147, 216-224.	5.2	37
97	Preparation of colloidal graphene in quantity by electrochemical exfoliation. Journal of Colloid and Interface Science, 2014, 436, 41-46.	9.4	89
98	Ionic Supercapacitor Electrode Materials: A System-Level Design of Electrode and Electrolyte for Transforming Ions into Colloids. Colloids and Interface Science Communications, 2014, 1, 39-42.	4.1	21
99	An ionic aqueous pseudocapacitor system: electroactive ions in both a salt electrode and redox electrolyte. RSC Advances, 2014, 4, 23338.	3.6	57
100	Crystallization of tin chloride as a promising pseudocapacitor electrode. CrystEngComm, 2014, 16, 4610-4618.	2.6	25
101	YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance. Journal of Colloid and Interface Science, 2014, 424, 84-89.	9.4	37
102	Microwave- or conventional–hydrothermal synthesis of Co-based materials for electrochemical energy storage. Ceramics International, 2014, 40, 8183-8188.	4.8	9
103	Conventional- and microwave-hydrothermal synthesis of LiMn2O4: Effect of synthesis on electrochemical energy storage performances. Ceramics International, 2014, 40, 3155-3163.	4.8	26
104	Formation of electroactive colloids via in situ coprecipitation under electric field: Erbium chloride alkaline aqueous pseudocapacitor. Journal of Colloid and Interface Science, 2014, 430, 265-271.	9.4	39
105	Low temperature synthesis of Fe2O3 and LiFeO2 as cathode materials for lithium-ion batteries. Electrochimica Acta, 2014, 136, 10-18.	5.2	29
106	Room-Temperature Crystal-to-Crystal Conversion of Cu ₂ O Nanoparticles to Supported Cu Thin Film. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 56-59.	0.3	1
107	Reaction Route to the Crystallization of Copper Oxides. Applied Science and Convergence Technology, 2014, 23, 14-26.	0.9	22
108	Room-Temperature Chemical Transformation Route to CuO Nanowires toward High-Performance Electrode Materials. Journal of Physical Chemistry C, 2013, 117, 22576-22583.	3.1	91

#	Article	IF	CITATIONS
109	A chemical reaction controlled mechanochemical route to construction of CuO nanoribbons for high performance lithium-ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 19708.	2.8	49
110	Chemical reaction controlled synthesis of Cu2O hollow octahedra and core–shell structures. CrystEngComm, 2013, 15, 10028.	2.6	45
111	Water-soluble inorganic salts with ultrahigh specific capacitance: crystallization transformation investigation of CuCl2 electrodes. CrystEngComm, 2013, 15, 10367.	2.6	70
112	Vapor-phase crystallization route to oxidized Cu foils in air as anode materials for lithium-ion batteries. CrystEngComm, 2013, 15, 144-151.	2.6	87
113	Chemoaffinity-mediated crystallization of Cu2O: a reaction effect on crystal growth and anode property. CrystEngComm, 2013, 15, 1739.	2.6	78
114	Microwaveâ€"Hydrothermal Crystallization of Polymorphic MnO ₂ for Electrochemical Energy Storage. Journal of Physical Chemistry C, 2013, 117, 10770-10779.	3.1	168
115	Facile Synthesis of Transitionâ€Metal Oxide Nanocrystals Embedded in Hollow Carbon Microspheres for Highâ€Rate Lithiumâ€Ionâ€Battery Anodes. Chemistry - A European Journal, 2013, 19, 9811-9816.	3.3	52
116	MnO ₂ as a Supercapacitor Electrode via Grinding Redox Reactions. Materials Focus, 2013, 2, 53-57.	0.4	3
117	Crystallization of MnO ₂ for Lithium-Ion Battery and Supercapacitor. Materials Focus, 2013, 2, 195-200.	0.4	6
118	Pressure-Induced Variations of Pseudocapacitance of Nickel Foams in KOH Alkaline Aqueous. Materials Focus, 2013, 2, 324-326.	0.4	0
119	A New Milestone for Designing Novel Inorganic Supercapacitors. Materials Focus, 2013, 2, 506-508.	0.4	1
120	Pseudocapacitance Performances of Naked Porous Nickel Foams. Materials Focus, 2013, 2, 239-243.	0.4	1
121	Chemical Synthesis of LiMn2O4 and LiMn1.53Ni0.47O3.67 for Lithium-Ion Battery Anodes. Energy and Environment Focus, 2013, 2, 250-253.	0.3	0
122	Hopper-like framework growth evolution in a cubic system: a case study of Cu ₂ O. Journal of Applied Crystallography, 2013, 46, 1603-1609.	4.5	24
123	Crystallisation of cuprous oxide. International Journal of Nanotechnology, 2013, 10, 4.	0.2	13
124	Microwave-Hydrothermal Synthesis of Mn ₃ O ₄ as Electrode Materials for Lithium-Ion Batteries and Supercapacitors. Energy and Environment Focus, 2013, 2, 41-45.	0.3	1
125	Methanol Solvothermal Route to Crystallize CeO2 from (NH4)2Ce(NO3)6. Energy and Environment Focus, 2013, 2, 240-243.	0.3	0
126	Rapid Route to CeO ₂ Nanoparticles from (NH ₄) ₂ Ce(NO ₃) ₆ . Energy and Environment Focus, 2013, 2, 168-170.	0.3	1

#	Article	IF	CITATIONS
127	Controllable Crystallization of Novel Rod-Based Cu ₂ O Superstructures and Their Applications in Lithium Ion Batteries. Materials Focus, 2013, 2, 35-38.	0.4	5
128	Crystallization of MnO2 by Microwave-Hydrothermal Synthesis and Its Applications for Supercapacitors and Lithium-Ion Batteries. Materials Focus, 2013, 2, 86-91.	0.4	5
129	Pseudocapacitance Evaluation of Naked Porous Nickel Foams During the Measurement of Supercapacitors. Materials Focus, 2013, 2, 121-124.	0.4	1
130	Rapid Synthesis of Rod-Like Pyrolucite MnO2 by Microwave-Assisted Hydrothermal Method. Materials Focus, 2013, 2, 131-135.	0.4	1
131	Grinding Route to MnO2 with Pseudocapacitance. Materials Focus, 2013, 2, 99-104.	0.4	O
132	Crystallization of MnO ₂ for Lithium-Ion Battery and Supercapacitor (Mater. Focus Vol. 2,) Tj ETQqC	0.4rgBT	Oyerlock 10
133	Nanoparticles via Crystallization: A Chemical Reaction Control Study of Copper Oxides. Nanoscience and Nanotechnology Letters, 2012, 4, 1-12.	0.4	32
134	pH-assisted crystallization of Cu2O: chemical reactions control the evolution from nanowires to polyhedra. CrystEngComm, 2012, 14, 8068.	2.6	94
135	Crystallization and functionality of inorganic materials. Materials Research Bulletin, 2012, 47, 2838-2842.	5.2	55
136	Synthesis of Cu ₂ O Nanocrystals and Cu ₂ O/Graphene Composite Paper for Lithium-Ion Battery Anode Materials. Energy and Environment Focus, 2012, 1, 50-56.	0.3	5
137	Ligand-Assisted Rational Crystallization of CuO Nanocrystals and Their Electrochemical Performances. Energy and Environment Focus, 2012, 1, 109-118.	0.3	3
138	Vision of the Construction of Cu2O Multiple-Pod Superstructures and Its Application for Lithium-Ion Battery Anodes. Journal of Advanced Microscopy Research, 2012, 7, 224-228.	0.3	1
139	Electron Microscopy Observation of the Chemical Conversion from Cu2O to CuO as Anode Electrodes of Lithium-Ion Batteries. Journal of Advanced Microscopy Research, 2012, 7, 264-269.	0.3	3
140	Ligand Molecules Regulate the Size and Morphology of Cu ₂ O Nanocrystals. Materials Focus, 2012, 1, 65-70.	0.4	5
141	Chloride Assistant Crystallization of $Cu < SUB > 2 < SUB > O$ Polyhedron Film by Oxidation of Copper Foil in Liquid Phase. Materials Focus, 2012, 1, 203-207.	0.4	6
142	Nanoscale Surface Engineering of Cuprous Oxide Crystals: The Function of Chloride. Nanoscience and Nanotechnology Letters, 2011, 3, 383-388.	0.4	18
143	Diethanolamine Reduction Route to Shaped Cuprous Oxide. Nanoscience and Nanotechnology Letters, 2011, 3, 423-428.	0.4	12
144	DIRECTING THE BRANCHING GROWTH OF CUPROUS OXIDE BY OH- IONS. Modern Physics Letters B, 2009, 23, 3753-3760.	1.9	12

#	Article	IF	CITATIONS
145	Facile Synthesis, Characterization and Electrochemical Performance of Nickel Oxide Nanoparticles Prepared by Thermal Decomposition. SSRN Electronic Journal, 0, , .	0.4	0