Kunfeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2037487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural design of graphene for use in electrochemical energy storage devices. Chemical Society Reviews, 2015, 44, 6230-6257.	38.1	389
2	Microwave–Hydrothermal Crystallization of Polymorphic MnO ₂ for Electrochemical Energy Storage. Journal of Physical Chemistry C, 2013, 117, 10770-10779.	3.1	168
3	Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology, 2020, 31, 132003.	2.6	145
4	Materials chemistry toward electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 7522-7537.	10.3	140
5	Sulfurâ€Induced Interface Engineering of Hybrid NiCo ₂ O ₄ @NiMo ₂ S ₄ Structure for Overall Water Splitting and Flexible Hybrid Energy Storage. Advanced Materials Interfaces, 2019, 6, 1901308.	3.7	130
6	Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La ³⁺ intercalation. Journal of Materials Chemistry A, 2019, 7, 22079-22083.	10.3	116
7	Carbon with ultrahigh capacitance when graphene paper meets K ₃ Fe(CN) ₆ . Nanoscale, 2015, 7, 432-439.	5.6	99
8	Morphology engineering of high performance binary oxide electrodes. Physical Chemistry Chemical Physics, 2015, 17, 732-750.	2.8	95
9	pH-assisted crystallization of Cu2O: chemical reactions control the evolution from nanowires to polyhedra. CrystEngComm, 2012, 14, 8068.	2.6	94
10	Room-Temperature Chemical Transformation Route to CuO Nanowires toward High-Performance Electrode Materials. Journal of Physical Chemistry C, 2013, 117, 22576-22583.	3.1	91
11	Preparation of colloidal graphene in quantity by electrochemical exfoliation. Journal of Colloid and Interface Science, 2014, 436, 41-46.	9.4	89
12	Vapor-phase crystallization route to oxidized Cu foils in air as anode materials for lithium-ion batteries. CrystEngComm, 2013, 15, 144-151.	2.6	87
13	Chemoaffinity-mediated crystallization of Cu2O: a reaction effect on crystal growth and anode property. CrystEngComm, 2013, 15, 1739.	2.6	78
14	In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO2. Journal of Colloid and Interface Science, 2015, 446, 77-83.	9.4	74
15	Phase Transformation of Ce ³⁺ -Doped MnO ₂ for Pseudocapacitive Electrode Materials. Journal of Physical Chemistry C, 2016, 120, 20077-20081.	3.1	72
16	Water-soluble inorganic salts with ultrahigh specific capacitance: crystallization transformation investigation of CuCl2 electrodes. CrystEngComm, 2013, 15, 10367.	2.6	70
17	Faceted Cu ₂ O structures with enhanced Li-ion battery anode performances. CrystEngComm, 2015, 17, 2110-2117.	2.6	69
18	Beyond graphene: materials chemistry toward high performance inorganic functional materials. Journal of Materials Chemistry A, 2015, 3, 2441-2453.	10.3	69

#	Article	IF	CITATIONS
19	MOF-Derived Hollow Co ₃ S ₄ Quasi-polyhedron/MWCNT Nanocomposites as Electrodes for Advanced Lithium Ion Batteries and Supercapacitors. ACS Applied Energy Materials, 2018, 1, 402-410.	5.1	69
20	CoCl ₂ Designed as Excellent Pseudocapacitor Electrode Materials. ACS Sustainable Chemistry and Engineering, 2014, 2, 440-444.	6.7	67
21	Nanoclay assisted electrochemical exfoliation of pencil core to high conductive graphene thin-film electrode. Journal of Colloid and Interface Science, 2017, 487, 156-161.	9.4	64
22	A Flexible and Ultrahigh Energy Density Capacitor via Enhancing Surface/Interface of Carbon Cloth Supported Colloids. Advanced Energy Materials, 2018, 8, 1703329.	19.5	61
23	Hydrothermal route to crystallization of FeOOH nanorods via FeCl ₃ ·6H ₂ O: effect of Fe ³⁺ concentration on pseudocapacitance of iron-based materials. CrystEngComm, 2015, 17, 1906-1910.	2.6	59
24	An ionic aqueous pseudocapacitor system: electroactive ions in both a salt electrode and redox electrolyte. RSC Advances, 2014, 4, 23338.	3.6	57
25	A liquid anode for rechargeable sodium-air batteries with low voltage gap and high safety. Nano Energy, 2018, 49, 574-579.	16.0	57
26	Crystallization and functionality of inorganic materials. Materials Research Bulletin, 2012, 47, 2838-2842.	5.2	55
27	Enhancing the Electrochemical Performance of the LiMn ₂ O ₄ Hollow Microsphere Cathode with a LiNi _{0.5} Mn _{1.5} O ₄ Coated Layer. Chemistry - A European Journal, 2014, 20, 824-830.	3.3	53
28	Microwave-Irradiation-Assisted Combustion toward Modified Graphite as Lithium Ion Battery Anode. ACS Applied Materials & Interfaces, 2018, 10, 909-914.	8.0	53
29	Facile Synthesis of Transitionâ€Metal Oxide Nanocrystals Embedded in Hollow Carbon Microspheres for Highâ€Rate Lithiumâ€Ionâ€Battery Anodes. Chemistry - A European Journal, 2013, 19, 9811-9816.	3.3	52
30	Water-soluble inorganic salt with ultrahigh specific capacitance: Ce(NO3)3 can be designed as excellent pseudocapacitor electrode. Journal of Colloid and Interface Science, 2014, 416, 172-176.	9.4	52
31	Dual–phase Spinel MnCo 2 O 4 Nanocrystals with Nitrogen-doped Reduced Graphene Oxide as Potential Catalyst for Hybrid Na–Air Batteries. Electrochimica Acta, 2017, 244, 222-229.	5.2	52
32	Morphology Dependent Supercapacitance of Nanostructured NiCo 2 O 4 on Graphitic Carbon Nitride. Electrochimica Acta, 2016, 200, 239-246.	5.2	51
33	A chemical reaction controlled mechanochemical route to construction of CuO nanoribbons for high performance lithium-ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 19708.	2.8	49
34	Rare earth and transitional metal colloidal supercapacitors. Science China Technological Sciences, 2015, 58, 1768-1778.	4.0	48
35	Engineering PPy decorated MnCo ₂ O ₄ urchins for quasi-solid-state hybrid capacitors. CrystEngComm, 2019, 21, 1600-1606.	2.6	48
36	Polymorphic crystallization of Cu ₂ O compound. CrystEngComm, 2014, 16, 5257-5267.	2.6	47

#	Article	IF	CITATIONS
37	Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper. CrystEngComm, 2014, 16, 7771.	2.6	47
38	Chemical reaction controlled synthesis of Cu2O hollow octahedra and core–shell structures. CrystEngComm, 2013, 15, 10028.	2.6	45
39	Crystallization of FeOOH via iron salts: an anion-chemoaffinity controlled hydrolysis toward high performance inorganic pseudocapacitor materials. CrystEngComm, 2015, 17, 1917-1922.	2.6	45
40	A binary A _x B _{1â^'x} ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in situ electric field assisted coprecipitation. Nanoscale, 2015, 7, 1161-1166.	5.6	45
41	Highly dispersed Co nanoparticles decorated on a N-doped defective carbon nano-framework for a hybrid Na–air battery. Dalton Transactions, 2020, 49, 1811-1821.	3.3	43
42	High Energy Density Hybrid Supercapacitor: In-Situ Functionalization of Vanadium-Based Colloidal Cathode. ACS Applied Materials & Interfaces, 2016, 8, 29522-29528.	8.0	42
43	Formation of electroactive colloids via in situ coprecipitation under electric field: Erbium chloride alkaline aqueous pseudocapacitor. Journal of Colloid and Interface Science, 2014, 430, 265-271.	9.4	39
44	Colloidal pseudocapacitor: Nanoscale aggregation of Mn colloids from MnCl2 under alkaline condition. Journal of Power Sources, 2015, 279, 365-371.	7.8	39
45	Ethylenediamine-assisted crystallization of Fe ₂ O ₃ microspindles with controllable size and their pseudocapacitance performance. CrystEngComm, 2015, 17, 1521-1525.	2.6	39
46	Beyond theoretical capacity in Cu-based integrated anode: Insight into the structural evolution of CuO. Journal of Power Sources, 2015, 275, 136-143.	7.8	39
47	Design strategies toward achieving high-performance CoMoO4@Co1.62Mo6S8 electrode materials. Materials Today Physics, 2020, 13, 100197.	6.0	38
48	Functionality of Fe(NO3)3 salts as both positive and negative pseudocapacitor electrodes in alkaline aqueous electrolyte. Electrochimica Acta, 2014, 147, 216-224.	5.2	37
49	YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance. Journal of Colloid and Interface Science, 2014, 424, 84-89.	9.4	37
50	Colloidal Supercapattery: Redox Ions in Electrode and Electrolyte. Chemical Record, 2018, 18, 282-292.	5.8	36
51	Composition Design Upon Iron Element Toward Supercapacitor Electrode Materials. Materials Focus, 2015, 4, 78-80.	0.4	34
52	Colloidal supercapacitor electrode materials. Materials Research Bulletin, 2016, 83, 201-206.	5.2	34
53	Metal organic framework derived CoFe@N-doped carbon/reduced graphene sheets for enhanced oxygen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 1962-1966.	6.0	34
54	Nanoparticles via Crystallization: A Chemical Reaction Control Study of Copper Oxides. Nanoscience and Nanotechnology Letters, 2012, 4, 1-12.	0.4	32

#	Article	IF	CITATIONS
55	Multiple Functional Biomassâ€Derived Activated Carbon Materials for Aqueous Supercapacitors, Lithiumâ€Ion Capacitors and Lithiumâ€Sulfur Batteries. Chinese Journal of Chemistry, 2017, 35, 861-866.	4.9	32
56	Low temperature synthesis of Fe2O3 and LiFeO2 as cathode materials for lithium-ion batteries. Electrochimica Acta, 2014, 136, 10-18.	5.2	29
57	A colloidal pseudocapacitor: Direct use of Fe(NO3)3 in electrode can lead to a high performance alkaline supercapacitor system. Journal of Colloid and Interface Science, 2015, 444, 49-57.	9.4	29
58	Colloidal paradigm in supercapattery electrode systems. Nanotechnology, 2018, 29, 024003.	2.6	29
59	In situ electrochemical activation of Ni-based colloids from an NiCl ₂ electrode and their advanced energy storage performance. Nanoscale, 2016, 8, 17090-17095.	5.6	28
60	Crystallization of Fe3+ in an alkaline aqueous pseudocapacitor system. CrystEngComm, 2014, 16, 6707.	2.6	27
61	Searching for electrode materials with high electrochemical reactivity. Journal of Materiomics, 2015, 1, 170-187.	5.7	27
62	Crystallization of transition metal oxides within 12 seconds. CrystEngComm, 2017, 19, 1230-1238.	2.6	27
63	Porous α-Fe2O3@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances. Nanomaterials, 2018, 8, 487.	4.1	27
64	State of the Art in Crystallization of LiNbO3 and Their Applications. Molecules, 2021, 26, 7044.	3.8	27
65	Conventional- and microwave-hydrothermal synthesis of LiMn2O4: Effect of synthesis on electrochemical energy storage performances. Ceramics International, 2014, 40, 3155-3163.	4.8	26
66	Crystallization of tin chloride as a promising pseudocapacitor electrode. CrystEngComm, 2014, 16, 4610-4618.	2.6	25
67	Hopper-like framework growth evolution in a cubic system: a case study of Cu ₂ O. Journal of Applied Crystallography, 2013, 46, 1603-1609.	4.5	24
68	Microwave-hydrothermal synthesis of Fe-based materials for lithium-ion batteries and supercapacitors. Ceramics International, 2014, 40, 2877-2884.	4.8	23
69	Highâ€Performance Quasiâ€Solidâ€State Naâ€Air Battery via Gel Cathode by Confining Moisture. Advanced Functional Materials, 2021, 31, 2011151.	14.9	23
70	Cu -based materials as high-performance electrodes toward electrochemical energy storage. Functional Materials Letters, 2014, 07, 1430001.	1.2	22
71	From graphite-clay composites to graphene electrode materials: In-situ electrochemical oxidation and functionalization. Materials Research Bulletin, 2017, 96, 281-285.	5.2	22
72	Novel High-Energy-Density Rechargeable Hybrid Sodium–Air Cell with Acidic Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 23748-23756.	8.0	22

#	Article	IF	CITATIONS
73	Reaction Route to the Crystallization of Copper Oxides. Applied Science and Convergence Technology, 2014, 23, 14-26.	0.9	22
74	Ionic Supercapacitor Electrode Materials: A System-Level Design of Electrode and Electrolyte for Transforming Ions into Colloids. Colloids and Interface Science Communications, 2014, 1, 39-42.	4.1	21
75	Architecture engineering of supercapacitor electrode materials. Functional Materials Letters, 2016, 09, 1640001.	1.2	21
76	Active La–Nb–O compounds for fast lithium-ion energy storage. Tungsten, 2019, 1, 287-296.	4.8	21
77	Ex situ identification of the Cu+ long-range diffusion path of a Cu-based anode for lithium ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 11168.	2.8	20
78	Microstructure and defect characteristics of lithium niobate with different Li concentrations. Inorganic Chemistry Frontiers, 2021, 8, 4006-4013.	6.0	18
79	Nanoscale Surface Engineering of Cuprous Oxide Crystals: The Function of Chloride. Nanoscience and Nanotechnology Letters, 2011, 3, 383-388.	0.4	18
80	Role of Hydrothermal parameters on phase purity of orthorhombic LiMnO2 for use as cathode in Li ion battery. Ceramics International, 2015, 41, 6729-6733.	4.8	17
81	Garnet-type solid-state electrolytes and interfaces in all-solid-state lithium batteries: progress and perspective. Applied Materials Today, 2020, 20, 100750.	4.3	17
82	Environment-friendly, flame retardant thermoplastic elastomer–magnesium hydroxide composites. Functional Materials Letters, 2017, 10, 1750042.	1.2	16
83	Anode performances of mixed LiMn ₂ O ₄ and carbon black toward lithium-ion battery. Functional Materials Letters, 2014, 07, 1450017.	1.2	15
84	High Surface Area Activated Carbon Synthesized from Bio-Based Material for Supercapacitor Application. Nanoscience and Nanotechnology Letters, 2014, 6, 997-1000.	0.4	15
85	A rapid combustion route to synthesize high-performance nanocrystalline cathode materials for Li-ion batteries. CrystEngComm, 2014, 16, 10969-10976.	2.6	15
86	How to efficiently utilize electrode materials in supercapattery?. Functional Materials Letters, 2019, 12, 1830005.	1.2	15
87	Nanolayered tin phosphate: a remarkably selective Cs ion sieve for acidic waste solutions. Chemical Communications, 2015, 51, 15661-15664.	4.1	14
88	Perspective on Micro-Supercapacitors. Frontiers in Chemistry, 2021, 9, 807500.	3.6	14
89	Crystallisation of cuprous oxide. International Journal of Nanotechnology, 2013, 10, 4.	0.2	13
90	Electrochemically Stabilized Porous Nickel Foam as Current Collector and Counter Electrode in Alkaline Electrolyte for Supercapacitor. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 50-55.	0.3	13

#	Article	IF	CITATIONS
91	Highly Ordered TiO2 Nanotube Arrays with Engineered Electrochemical Energy Storage Performances. Materials, 2021, 14, 510.	2.9	13
92	DIRECTING THE BRANCHING GROWTH OF CUPROUS OXIDE BY OH- IONS. Modern Physics Letters B, 2009, 23, 3753-3760.	1.9	12
93	LiMn2O4-based materials as anodes for lithium-ion battery. Functional Materials Letters, 2014, 07, 1350070.	1.2	12
94	Novel inorganic tin phosphate gel: multifunctional material. Chemical Communications, 2018, 54, 2682-2685.	4.1	12
95	Diethanolamine Reduction Route to Shaped Cuprous Oxide. Nanoscience and Nanotechnology Letters, 2011, 3, 423-428.	0.4	12
96	化å¦å应和结晶控å^¶çš"电化å¦å,¨èƒ½ç"µæžææ–™. Zhongguo Kexue Jishu Kexue/Scientia Sinica	Te cha olog	;ic a, 12015, 45
97	SURFACE–INTERFACE REACTION OF SUPERCAPACITOR ELECTRODE MATERIALS. Surface Review and Letters, 2017, 24, 1730005.	1.1	10
98	Facile synthesis, characterization and electrochemical performance of nickel oxide nanoparticles prepared by thermal decomposition. Scripta Materialia, 2020, 181, 53-57.	5.2	10
99	Multiscale Investigation into Chemically Stable NASICON Solid Electrolyte in Acidic Solutions. ACS Applied Materials & amp; Interfaces, 2021, 13, 33262-33271.	8.0	10
100	Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte. Materials, 2022, 15, 1157.	2.9	10
101	Microwave- or conventional–hydrothermal synthesis of Co-based materials for electrochemical energy storage. Ceramics International, 2014, 40, 8183-8188.	4.8	9
102	La ³⁺ :Ni–Cl oxyhydroxide gels with enhanced electroactivity as positive materials for hybrid supercapacitors. Dalton Transactions, 2020, 49, 1107-1115.	3.3	8
103	Facile Fabrication of Ga 2 O 3 Nanorods for Photoelectrochemical Water Splitting. ChemNanoMat, 2020, 6, 208-211.	2.8	8
104	Materials Design Towards High Performance Cu-Based Electrodes for Electrochemical Energy Storage Devices. Science of Advanced Materials, 2015, 7, 2037-2052.	0.7	7
105	Crystallization of MnO ₂ for Lithium-Ion Battery and Supercapacitor. Materials Focus, 2013, 2, 195-200.	0.4	6
106	Applying Cerium to High Performance Supercapacitors. Materials Focus, 2015, 4, 81-83.	0.4	6
107	Temperature-dependent crystallization of Cu ₂ O rhombic dodecahedra. CrystEngComm, 2021, 23, 7970-7977.	2.6	6
108	Chloride Assistant Crystallization of Cu ₂ O Polyhedron Film by Oxidation of Copper Foil in Liquid Phase. Materials Focus, 2012, 1, 203-207.	0.4	6

#	Article	IF	CITATIONS
109	Synthesis of spinel LiMn2O4 cathode material by a modified solid state reaction. Functional Materials Letters, 2015, 08, 1540002.	1.2	5
110	Fast growth of cerium-doped lutetium yttrium orthosilicate single crystals and their scintillation properties. Journal of Rare Earths, 2021, 39, 1527-1532.	4.8	5
111	Synthesis of Cu ₂ O Nanocrystals and Cu ₂ O/Graphene Composite Paper for Lithium-Ion Battery Anode Materials. Energy and Environment Focus, 2012, 1, 50-56.	0.3	5
112	Ligand Molecules Regulate the Size and Morphology of Cu ₂ O Nanocrystals. Materials Focus, 2012, 1, 65-70.	0.4	5
113	Controllable Crystallization of Novel Rod-Based Cu ₂ O Superstructures and Their Applications in Lithium Ion Batteries. Materials Focus, 2013, 2, 35-38.	0.4	5
114	Crystallization of MnO2 by Microwave-Hydrothermal Synthesis and Its Applications for Supercapacitors and Lithium-Ion Batteries. Materials Focus, 2013, 2, 86-91.	0.4	5
115	Colloidal supercapattery. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2019, 49, 175-181.	0.5	5
116	Nanofabrication strategies for advanced electrode materials. Nanofabrication, 2017, 3, 1-15.	1.1	4
117	Nanocrystalline coatings and their electrochemical energy storage applications. Functional Materials Letters, 2020, 13, 2030001.	1.2	4
118	Colloidal to micrometer-sized iron oxides and oxyhydroxides as anode materials for batteries and pseudocapacitors: Electrochemical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126232.	4.7	4
119	MnO ₂ as a Supercapacitor Electrode via Grinding Redox Reactions. Materials Focus, 2013, 2, 53-57.	0.4	3
120	Toward materials-by-design: achieving functional materials with physical and chemical effects. Nanotechnology, 2020, 31, 024002.	2.6	3
121	Li-ion battery studies on nickel oxide nanoparticles prepared by facile route calcination. Polyhedron, 2020, 179, 114360.	2.2	3
122	Ligand-Assisted Rational Crystallization of CuO Nanocrystals and Their Electrochemical Performances. Energy and Environment Focus, 2012, 1, 109-118.	0.3	3
123	Electron Microscopy Observation of the Chemical Conversion from Cu2O to CuO as Anode Electrodes of Lithium-Ion Batteries. Journal of Advanced Microscopy Research, 2012, 7, 264-269.	0.3	3
124	Fast Preparation of Ultrafine CeO ₂ Nanoparticles. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 18-22.	0.3	2
125	Methanol Solvothermal Route to Size-Controllable Synthesis of CeO ₂ with Electrochemical Performances. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 71-75.	0.3	2
126	Advanced Flame Retardant Magnesium-Based Materials: System Optimization Toward Enhanced Performance of Thermoplastic Elastomer. Science of Advanced Materials, 2018, 10, 1431-1437.	0.7	2

#	Article	IF	CITATIONS
127	A New Milestone for Designing Novel Inorganic Supercapacitors. Materials Focus, 2013, 2, 506-508.	0.4	1
128	Pseudocapacitance Performances of Naked Porous Nickel Foams. Materials Focus, 2013, 2, 239-243.	0.4	1
129	Microwave-Hydrothermal Synthesis of Mn ₃ O ₄ as Electrode Materials for Lithium-Ion Batteries and Supercapacitors. Energy and Environment Focus, 2013, 2, 41-45.	0.3	1
130	Rapid Route to CeO ₂ Nanoparticles from (NH ₄) ₂ Ce(NO ₃) ₆ . Energy and Environment Focus, 2013, 2, 168-170.	0.3	1
131	Room temperature reduction and hydrolysis of FeCl3â‹6H2O on self-sacrifice microscale Cu2O octahedron template: A mild chemical synthesis of pseudocapacitor electrode materials. Functional Materials Letters, 2015, 08, 1550047.	1.2	1
132	Vision of the Construction of Cu2O Multiple-Pod Superstructures and Its Application for Lithium-Ion Battery Anodes. Journal of Advanced Microscopy Research, 2012, 7, 224-228.	0.3	1
133	Room-Temperature Crystal-to-Crystal Conversion of Cu ₂ O Nanoparticles to Supported Cu Thin Film. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 56-59.	0.3	1
134	Pseudocapacitance Evaluation of Naked Porous Nickel Foams During the Measurement of Supercapacitors. Materials Focus, 2013, 2, 121-124.	0.4	1
135	Rapid Synthesis of Rod-Like Pyrolucite MnO2 by Microwave-Assisted Hydrothermal Method. Materials Focus, 2013, 2, 131-135.	0.4	1
136	Nanomaterials and Electrochemical Reactivities: Nanoscale Fe-Based Electrode Materials Toward High Performance Energy Storage System. Reviews in Nanoscience and Nanotechnology, 2015, 4, 50-66.	0.4	1
137	Pressure-Induced Variations of Pseudocapacitance of Nickel Foams in KOH Alkaline Aqueous. Materials Focus, 2013, 2, 324-326.	0.4	Ο
138	Chemical Synthesis of LiMn2O4 and LiMn1.53Ni0.47O3.67 for Lithium-Ion Battery Anodes. Energy and Environment Focus, 2013, 2, 250-253.	0.3	0
139	Methanol Solvothermal Route to Crystallize CeO2 from (NH4)2Ce(NO3)6. Energy and Environment Focus, 2013, 2, 240-243.	0.3	Ο
140	Pseudocapacitors Go to Nanoscale for Performance Enhancement. Materials Focus, 2015, 4, 62-65.	0.4	0
141	Crystallization design of multicale electrode materials forelectrochemical energy storage. Scientia Sinica Chimica, 2021, 51, 742-750.	0.4	Ο
142	Rapid synthesis of α-Sn(HPO4)2·H2O by microwave-hydrothermal process. Ceramics International, 2021, 47, 16303-16308.	4.8	0
143	Grinding Route to MnO2 with Pseudocapacitance. Materials Focus, 2013, 2, 99-104.	0.4	0

144 Crystallization of MnO₂ for Lithium-Ion Battery and Supercapacitor (Mater. Focus Vol. 2,) Tj ETQq0 0.0 rgBT /Overlock 10

#	Article	IF	CITATIONS
145	Facile Synthesis, Characterization and Electrochemical Performance of Nickel Oxide Nanoparticles Prepared by Thermal Decomposition. SSRN Electronic Journal, 0, , .	0.4	0