Alberto Bossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2037219/publications.pdf

Version: 2024-02-01

55	1,172	18	33
papers	citations	h-index	g-index
59	59	59	1596
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	(Dimesityl)boron Benzodithiophenes: Synthesis, Electrochemical, Photophysical and Theoretical Characterization. ChemistryOpen, 2022, 11, e202100265.	1.9	2
2	Advancing Near-Infrared Phosphorescence with Heteroleptic Iridium Complexes Bearing a Single Emitting Ligand: Properties and Organic Light-Emitting Diode Applications. Chemistry of Materials, 2022, 34, 574-583.	6.7	20
3	Steric hindrance in the on-surface synthesis of diethynyl-linked anthracene polymers. Physical Chemistry Chemical Physics, 2022, 24, 13616-13624.	2.8	2
4	Ordered assembly of non-planar vanadyl-tetraphenylporphyrins on ultra-thin iron oxide. Physical Chemistry Chemical Physics, 2022, 24, 17077-17087.	2.8	3
5	Outâ€Ofâ€Plane Metal Coordination for a True Solventâ€Free Building with Molecular Bricks: Dodging the Surface Ligand Effect for Onâ€Surface Vacuum Selfâ€Assembly. Advanced Functional Materials, 2021, 31, 2011008.	14.9	8
6	A microprocessor-aided platform enabling surface differential reflectivity and reflectance anisotropy spectroscopy. European Physical Journal Plus, 2021, 136, 1.	2.6	5
7	Driving Organic Nanocrystals Dissolution Through Electrochemistry. ChemistryOpen, 2021, 10, 748-755.	1.9	2
8	Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes. Journal of Chemical Theory and Computation, 2020, 16, 1188-1199.	5 . 3	5
9	Customised porphyrin coating films for graphite electrode protection: An investigation on the role of peripheral groups by coupled AFM and cyclic voltammetry techniques. Applied Surface Science, 2020, 507, 145055.	6.1	1
10	Nucleobase morpholino \hat{l}^2 amino acids as molecular chimeras for the preparation of photoluminescent materials from ribonucleosides. Scientific Reports, 2020, 10, 19331.	3.3	15
11	Close-Packed Arrangements of Flat-On Free-Base Porphyrins Driven by van der Waals Epitaxy. Crystal Growth and Design, 2020, 20, 7450-7459.	3.0	4
12	Benzodithienyl Silanes for Organic Electronics: AIE Solidâ€State Blue Emitters and High Triplet Energy Chargeâ€Transport Materials. Advanced Optical Materials, 2020, 8, 2001018.	7.3	4
13	Anion intercalated graphite: a combined electrochemical and tribological investigation by in situ AFM. Journal of Microscopy, 2020, 280, 222-228.	1.8	3
14	Porphycene Protonation: A Fast and Reversible Reaction Enabling Optical Transduction for Acid Sensing. ChemPhotoChem, 2020, 4, 5264-5270.	3.0	4
15	In situ atomic force microscopy: the case study of graphite immersed in aqueous NaOH electrolyte. European Physical Journal Plus, 2020, 135, 1.	2.6	1
16	The Quantum Efficiency Roll-Off Effect in Near-Infrared Organic Electroluminescent Devices with Iridium Complexes Emitters. Materials, 2020, 13, 1855.	2.9	4
17	Porphycene Films Grown on Highly Oriented Pyrolytic Graphite: Unveiling Structure–Property Relationship through Combined Reflectance Anisotropy Spectroscopy and Atomic Force Microscopy Investigations. Proceedings (mdpi), 2020, 56, 44.	0.2	1
18	Reactive Dissolution of Organic Nanocrystals at Controlled pH. ChemNanoMat, 2020, 6, 567-575.	2.8	4

#	Article	IF	CITATIONS
19	Uniaxial Alignment of a Monolayer of Flat-on Free-Base Porphyrins on an Exfoliable Insulating Substrate. Nano Letters, 2019, 19, 5537-5543.	9.1	3
20	Unraveling the Degradation Mechanism of Flrpic-Based Blue OLEDs: I. A Theoretical Investigation. Chemistry of Materials, 2019, 31, 2269-2276.	6.7	9
21	Unraveling the Degradation Mechanism in Flrpic-Based Blue OLEDs: II. Trap and Detect Molecules at the Interfaces. Chemistry of Materials, 2019, 31, 2277-2285.	6.7	27
22	Morphological changes of porphine films on graphite by perchloric and phosphoric electrolytes. Applied Surface Science, 2018, 442, 501-506.	6.1	13
23	The influence of anchoring group position in ruthenium dye molecule on performance of dye-sensitized solar cells. Dyes and Pigments, 2018, 150, 335-346.	3.7	12
24	Synthesis and characterization of phosphorescent isomeric iridium complexes with a rigid cyclometalating ligand. Polyhedron, 2018, 140, 138-145.	2.2	9
25	Exploring the Role of Porphyrin Films in Graphite Electrode Protection. , 2018, , 107-118.		1
26	\hat{l}^2 -Diketonate ancillary ligands in heteroleptic iridium complexes: a balance between synthetic advantages and photophysical troubles. Photochemical and Photobiological Sciences, 2018, 17, 1169-1178.	2.9	6
27	Vacuum-Deposited Porphyrin Protective Films on Graphite: Electrochemical Atomic Force Microscopy Investigation during Anion Intercalation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4100-4105.	8.0	19
28	Iridium(III)â€Doped Coreâ€Shell Silica Nanoparticles: Nearâ€IR Electrogenerated Chemiluminescence in Water. ChemElectroChem, 2017, 4, 1690-1696.	3.4	14
29	Iridium (III)-Doped Core-Shell Silica Nanoparticles: Near-IR Electrogenerated Chemiluminescence in Water. ChemElectroChem, 2017, 4, 1570-1570.	3.4	0
30	Expression of calretinin in high-grade hormone receptor-negative invasive breast carcinomas: correlation with histological and molecular subtypes. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2017, 471, 13-21.	2.8	4
31	Upper limit to the ultimate achievable emission wavelength in near-IR emitting cyclometalated iridium complexes. Photochemical and Photobiological Sciences, 2017, 16, 1220-1223.	2.9	17
32	Cyclometalated Pt(<scp>ii</scp>) complexes with a bidentate Schiff-base ligand displaying unexpected cis/trans isomerism: synthesis, structures and electronic properties. Dalton Transactions, 2017, 46, 12500-12506.	3.3	11
33	Dual action Smac mimetics–zinc chelators as pro-apoptotic antitumoral agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4613-4619.	2.2	6
34	Nearâ€IR Emitting Iridium(III) Complexes with Heteroaromatic βâ€Diketonate Ancillary Ligands for Efficient Solutionâ€Processed OLEDs: Structure–Property Correlations. Angewandte Chemie - International Edition, 2016, 55, 2714-2718.	13.8	126
35	Nearâ€IR Emitting Iridium(III) Complexes with Heteroaromatic βâ€Diketonate Ancillary Ligands for Efficient Solutionâ€Processed OLEDs: Structure–Property Correlations. Angewandte Chemie, 2016, 128, 2764-2768.	2.0	23
36	Design of perylene diimides for organic solar cell: Effect of molecular steric hindrance and extended conjugation. Materials Chemistry and Physics, 2015, 163, 152-160.	4.0	16

#	Article	IF	Citations
37	The effect of perylene diimides chemical structure on the photovoltaic performance of P3HT/perylene diimides solar cells. Dyes and Pigments, 2015, 120, 57-64.	3.7	23
38	In Situ Observation of Degradation by Ligand Substitution in Small-Molecule Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials, 2014, 26, 6578-6584.	6.7	30
39	Synthesis, Photophysics, and Electrochemistry of Tetra(2â€ŧhienyl)ethylene (TTE) Derivatives. European Journal of Organic Chemistry, 2013, 2013, 7489-7499.	2.4	23
40	Metalâ€Free Benzodithiopheneâ€Containing Organic Dyes for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 84-94.	2.4	36
41	Photophysical Properties of Cyclometalated Pt(II) Complexes: Counterintuitive Blue Shift in Emission with an Expanded Ligand π System. Inorganic Chemistry, 2013, 52, 12403-12415.	4.0	143
42	Gold(I) Complexes of Tetrathiaheterohelicene Phosphanes. Inorganic Chemistry, 2013, 52, 7995-8004.	4.0	63
43	Tetrathia [7] helicene-Based Complexes of Ferrocene and $(\hat{l}\cdot sup>5-Cyclohexadienyl) tricarbonyl manganese: Synthesis and Electrochemical Studies. Organometallics, 2012, 31, 92-104.$	2.3	29
44	Synthesis of polymers containing regularly distributed tetrathiaâ€[7]â€elicene units along the backbone. Journal of Polymer Science Part A, 2010, 48, 4704-4710.	2.3	6
45	Synthesis, characterization, and transistor response of tetrathia-[7]-helicene precursors and derivatives. Organic Electronics, 2009, 10, 1511-1520.	2.6	66
46	Electrochemical activity of thiahelicenes: Structure effects and electrooligomerization ability. Electrochimica Acta, 2009, 54, 5083-5097.	5.2	39
47	Theoretical and Experimental Investigation of Electric Field Induced Second Harmonic Generation in Tetrathia[7]helicenes. Journal of Physical Chemistry C, 2008, 112, 7900-7907.	3.1	104
48	Novel Substituted Tetrathia [7] helicenes by Direct Functionalization of the Helical System or Photocyclization of Substituted 1,2-(Bis-benzodithienyl) ethenes. Heterocycles, 2008, 76, 1439.	0.7	19
49	Synthesis of Bimetallic Iron-Chromium and Iron-Manganese Complexes with Conjugated Benzodithiophene-Based Spacers. Synthesis, 2007, 2007, 277-283.	2.3	0
50	Silylâ€Substituted Tetrathia[7]helicenes: Synthesis, Xâ€ray Characterization and Reactivity. European Journal of Organic Chemistry, 2007, 2007, 4499-4509.	2.4	41
51	Enantioselective synthesis induced by tetrathia-[7]-helicenes in conjunction with asymmetric autocatalysis. Tetrahedron: Asymmetry, 2006, 17, 2050-2053.	1.8	7 5
52	Electroluminescent orthofused thiophene dye embedded in polyvinylcarbazole. Journal of Applied Physics, 2006, 100, 083107.	2.5	11
53	A Novel and Efficient Approach to (Z)-1,2-Bis(benzodithienyl)ethene ÂPrecursors of Tetrathia[7]helicenes. Synlett, 2005, 2005, 1137-1141.	1.8	2
54	Theoretical Design of Substituted Tetrathia-[7]-Helicenes with Large Second-Order Nonlinear Optical Responses. ChemPhysChem, 2004, 5, 1438-1442.	2.1	58

Alberto Bossi

#	Article	IF	CITATIONS
55	A Stable Porphyrin Functionalized Graphite Electrode Used at the Oxygen Evolution Reaction Potential. Electroanalysis, 0, , .	2.9	O