Ilya Sukhanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2036911/publications.pdf

Version: 2024-02-01

759233 552781 38 842 12 26 h-index citations g-index papers 52 52 52 901 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pronounced Hyperactivity, Cognitive Dysfunctions, and BDNF Dysregulation in Dopamine Transporter Knock-out Rats. Journal of Neuroscience, 2018, 38, 1959-1972.	3.6	148
2	Metabotropic glutamate receptor (mGluR5) antagonist MPEP attenuated cue- and schedule-induced reinstatement of nicotine self-administration behavior in rats. Neuropharmacology, 2005, 49, 167-178.	4.1	126
3	Anxiolytic-like effects of mGlu1 and mGlu5 receptor antagonists in rats. European Journal of Pharmacology, 2005, 514, 25-34.	3.5	103
4	TAAR1 Modulates Cortical Glutamate NMDA Receptor Function. Neuropsychopharmacology, 2015, 40, 2217-2227.	5.4	98
5	Postsynaptic D2 dopamine receptor supersensitivity in the striatum of mice lacking TAAR1. Neuropharmacology, 2015, 93, 308-313.	4.1	88
6	Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opinion on Therapeutic Targets, 2018, 22, 513-526.	3.4	50
7	Trace Amine-Associated Receptor 5 Provides Olfactory Input Into Limbic Brain Areas and Modulates Emotional Behaviors and Serotonin Transmission. Frontiers in Molecular Neuroscience, 2020, 13, 18.	2.9	45
8	TAAR1-dependent effects of apomorphine in mice. International Journal of Neuropsychopharmacology, 2014, 17, 1683-1693.	2.1	35
9	Increased context-dependent conditioning to amphetamine in mice lacking TAAR1. Pharmacological Research, 2016, 103, 206-214.	7.1	33
10	Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine. Frontiers in Pharmacology, 2018, 9, 329.	3.5	27
11	Effects of NMDA receptor channel blockers, MK-801 and memantine, on locomotor activity and tolerance to delay of reward in Wistarâ´Kyoto and spontaneously hypertensive rats. Behavioural Pharmacology, 2004, 15, 263-271.	1.7	22
12	Novel translational rat models of dopamine transporter deficiency. Neural Regeneration Research, 2018, 13, 2091.	3.0	13
13	Activation of trace amine-associated receptor 1 attenuates schedule-induced polydipsia in rats. Neuropharmacology, 2019, 144, 184-192.	4.1	12
14	The Action of TAAR1 Agonist RO5263397 on Executive Functions in Rats. Cellular and Molecular Neurobiology, 2020, 40, 215-228.	3.3	10
15	Behavioral Effects of a Potential Novel TAAR1 Antagonist. Frontiers in Pharmacology, 2018, 9, 953.	3.5	8
16	Novel reinforcement learning paradigm based on response patterning under interval schedules of reinforcement. Behavioural Brain Research, 2017, 331, 276-281.	2.2	6
17	The Lack of Dopamine Transporter Is Associated With Conditional Associative Learning Impairments and Striatal Proteomic Changes. Frontiers in Psychiatry, 2022, 13, 799433.	2.6	5
18	Identification of a novel trace amine-associated receptor 1 agonist with in vivo activity. European Neuropsychopharmacology, 2019, 29, S190.	0.7	2

#	Article	IF	Citations
19	Đ"Đ¸Đ½Đ°Đ¼Đ¸ĐºĐ° ÑÑ"Ñ"ĐµĐºÑ,Đ¾Đ² Đ½ĐµĐºĐ¾Đ½ĐºÑƒÑ€ĐµĐ½Ñ,Đ½Đ¾Đ3Đ¾ Đ°Đ½Ñ,аĐ3Đ¾Đ¾	⁄2 ઌ ૺૢ૾ૣૣૣૣૣ૿૾૾ૼઌ૿ૺૢઌૺ°	N <u>a</u> MDA-Ñ€Ð
20	No tolerance to anticompulsive activity of trace amine-associated receptor 1 agonist following repeated administration. European Neuropsychopharmacology, 2018, 28, S38-S39.	0.7	1
21	P.204 Hyperdopaminergia in rats is associated with reverse effort-cost dependent performance. European Neuropsychopharmacology, 2021, 44, S18-S19.	0.7	1
22	S.3.3 Behavioral mechanisms of nicotine abuse: Search for novel pharmacotherapies to treat nicotine dependence. European Neuropsychopharmacology, 2005, 15, S98.	0.7	0
23	P.2.26 Effect of MK-801 on sustained attention in rats. European Neuropsychopharmacology, 2009, 19, S55-S55.	0.7	O
24	S.07.02 Role of trace amine-associated receptor 1 (TAAR1) in the modulation of dopaminergic system and cortico-striatal signalling. European Neuropsychopharmacology, 2013, 23, S120.	0.7	0
25	H.1 - NOVEL REWARD LEARNING PARADIGM BASED ON RESPONSE PATTERNING UNDER INTERVAL SCHEDULES OF REINFORCEMENT. Behavioural Pharmacology, 2013, 24, e60.	1.7	O
26	P.1.h.027 Dopamine transporter knockout rats: new experimental model in behavioral psychopharmacology research. European Neuropsychopharmacology, 2014, 24, S285.	0.7	0
27	Dimensions of GSK3 Monoamine-Related Intracellular Signaling in Schizophrenia. Handbook of Behavioral Neuroscience, 2016, 23, 447-462.	0.7	O
28	Differences in effects of NMDA receptor antagonists in BARR2-KO mice. European Neuropsychopharmacology, 2016, 26, S276.	0.7	0
29	P.429 Analysis of cognitive control in Wistar-Kyoto and spontaneously hypertensive rats. European Neuropsychopharmacology, 2019, 29, S304-S305.	0.7	O
30	P.112 Impaired conditioning in dopamine transporter knockout rats. European Neuropsychopharmacology, 2019, 29, S94-S95.	0.7	0
31	Publication of a scientific article in for an english-language journal. Part 5. Nephrology (Saint-Petersburg), 2021, 25, 79-98.	0.4	O
32	Publication of a scientific article in for an english-language journal. Part 2. Nephrology (Saint-Petersburg), 2019, 23, 116-121.	0.4	0
33	Đ›Đ¸Đ½Đ¸Đ¸Đ¶Đ¸Đ²Đ¾Ñ,Đ½Ñ‹Ñ ÑĐ¾ ÑĐ½Đ¸Đ¶ĐμĐ½Đ½Đ¾Đ¹ ÑаÑĐ¿Ñ€ĐμÑÑиĐμĐ¹ ĐƊ¾Ñ"Đ°Đ¼Đ¸Đ)¹ ∕∆£ 3⁄4в	Đ ¾ Đ³Đ¾
34	Publication of a scientific article in for an english-languagejournal. Part4. Nephrology (Saint-Petersburg), 2020, 24, 80-96.	0.4	0
35	Publication of a scientific article in for an english-language journal. Part 3. Nephrology (Saint-Petersburg), 2020, 24, 96-102.	0.4	O
36	TRACE AMINE-ASSOCIATED RECEPTORS: A NEW TARGET FOR THE DEVELOPMENT OF ANTI-ADDICTIVE AGENTS?. Voprosy Narkologii, 2021, , 52-72.	0.2	0

#	Article	lF	CITATIONS
37	PUBLICATION OF A SCIENTIFIC ARTICLE IN FOR AN ENGLISH-LANGUAGE JOURNAL. PART 6. Nephrology (Saint-Petersburg), 2022, 26, 99-113.	0.4	O
38	Associative learning impairments in rats lacking dopamine transporter. UÄenye Zapiski Sankt-Peterburgskogo Gosudarstvennogo Medicinskogo Universiteta Im Akad I P Pavlova, 2022, 29, 18-27.	0.2	0