
Jenaina Ribeiro Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2035093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of engineered-biochar under different pyrolysis conditions for phosphorus removal from aqueous solution. Science of the Total Environment, 2022, 816, 151559.	8.0	23
2	Biochar-graphene oxide composite is efficient to adsorb and deliver copper and zinc in tropical soil. Journal of Cleaner Production, 2022, 360, 132170.	9.3	9
3	Exploring the structural and optoelectronic properties of natural insulating phlogopite in van der Waals heterostructures. 2D Materials, 2022, 9, 035007.	4.4	12
4	Influence of Methyl Groups in Triphenylmethane Dyes on Their Adsorption on Biochars from Coffee Husks. Water, Air, and Soil Pollution, 2022, 233, .	2.4	4
5	Mechanical properties of layered tilkerodeite (Pd2HgSe3) and jacutingaite (Pt2HgSe3) crystals: Insights on the interlayer, intralayer interactions, and phonons. Journal of Applied Physics, 2021, 130, 015105.	2.5	1
6	Raman spectrum of layered tilkerodeite (Pd ₂ HgSe ₃) topological insulator: the palladium analogue of jacutingaite (Pt ₂ HgSe ₃). Journal of Physics Condensed Matter, 2021, 33, 065401.	1.8	6
7	Raman spectrum of layered jacutingaite (Pt 2 HgSe 3) crystals—Experimental and theoretical study. Journal of Raman Spectroscopy, 2020, 51, 357-365.	2.5	10
8	Coffee growing altitude influences the microbiota, chemical compounds and the quality of fermented coffees. Food Research International, 2020, 129, 108872.	6.2	62
9	Raman spectroscopy polarization dependence analysis in two-dimensional gallium sulfide. Physical Review B, 2020, 102, .	3.2	16
10	Superior stiffness and vibrational spectroscopic signature of two-dimensional diamond-like carbon nitrides. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 114007.	2.7	2
11	Temperature-dependent phonon dynamics and anharmonicity of suspended and supported few-layer gallium sulfide. Nanotechnology, 2020, 31, 495702.	2.6	10
12	Temperature-dependent phonon dynamics of supported and suspended monolayer tungsten diselenide. AIP Advances, 2019, 9, .	1.3	27
13	Probing Spatial Phonon Correlation Length in Post-Transition Metal Monochalcogenide GaS Using Tip-Enhanced Raman Spectroscopy. Nano Letters, 2019, 19, 7357-7364.	9.1	30
14	Monitoring the Applied Strain in Monolayer Gallium Selenide through Vibrational Spectroscopies: A First-Principles Investigation. Physical Review Applied, 2019, 11, .	3.8	17
15	Preparation of mesoporous activated carbon from defective coffee beans for adsorption of fresh whey proteins. Acta Scientiarum - Technology, 2019, 42, e45914.	0.4	1
16	Carbon Stability of Engineered Biochar-Based Phosphate Fertilizers. ACS Sustainable Chemistry and Engineering, 2018, 6, 14203-14212.	6.7	39
17	Stable holey two-dimensional <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal">C <mml:mn>2</mml:mn> </mml:mi </mml:msub> <mml:mi mathvariant="normal">N </mml:mi </mml:mrow> structures with tunable electronic structure. Physical Review B, 2018, 97, .</mmi:math 	3.2	13
18	DIFFERENT PLANT BIOMASS CHARACTERIZATIONS FOR BIOCHAR PRODUCTION. Cerne, 2017, 23, 529-536.	0.9	36

JENAINA RIBEIRO SOARES

#	Article	IF	CITATIONS
19	Ultra-weak interlayer coupling in two-dimensional gallium selenide. Physical Chemistry Chemical Physics, 2016, 18, 25401-25408.	2.8	22
20	Depth dependence of black carbon structure, elemental and microbiological composition in anthropic Amazonian dark soil. Soil and Tillage Research, 2016, 155, 298-307.	5.6	21
21	Study of Carbon Nanostructures for Soil Fertility Improvement. Nanomedicine and Nanotoxicology, 2016, , 85-104.	0.2	1
22	Group theory for structural analysis and lattice vibrations in phosphorene systems. Physical Review B, 2015, 91, .	3.2	82
23	Second Harmonic Generation in WSe ₂ . 2D Materials, 2015, 2, 045015.	4.4	88
24	Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation. Scientific Reports, 2015, 5, 10408.	3.3	21
25	Structural analysis of polycrystalline graphene systems by Raman spectroscopy. Carbon, 2015, 95, 646-652.	10.3	184
26	News and Views: Perspectives on Graphene and Other 2D Materials Research and Technology Investments. Brazilian Journal of Physics, 2014, 44, 278-282.	1.4	6
27	Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Physical Review B, 2014, 90, .	3.2	182
28	Resonance effects on the Raman spectra of graphene superlattices. Physical Review B, 2013, 88, .	3.2	128
29	The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils. Journal of Raman Spectroscopy, 2013, 44, 283-289.	2.5	59
30	Electron Microscopy and Spectroscopy Analysis of Carbon Nanostructures in Highly Fertile Amazonian Anthrosoils. Microscopy and Microanalysis, 2012, 18, 1502-1503.	0.4	2
31	Microscopy and spectroscopy analysis of carbon nanostructures in highly fertile Amazonian anthrosoils. Soil and Tillage Research, 2012, 122, 61-66.	5.6	48