Robert Eckersley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2034771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Vivo Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles. IEEE Transactions on Medical Imaging, 2015, 34, 433-440.	8.9	315
2	Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus, 2011, 1, 520-539.	3.0	248
3	Non-invasive diagnosis of hepatic cirrhosis by transit-time analysis of an ultrasound contrast agent. Lancet, The, 1999, 353, 1579-1583.	13.7	242
4	Improved Imaging of Liver Metastases with Stimulated Acoustic Emission in the Late Phase of Enhancement with the US Contrast Agent SH U 508A: Early Experience. Radiology, 1999, 210, 409-416.	7.3	237
5	Acoustic super-resolution with ultrasound and microbubbles. Physics in Medicine and Biology, 2013, 58, 6447-6458.	3.0	225
6	Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power. Ultrasound in Medicine and Biology, 2005, 31, 213-219.	1.5	218
7	Advances in Ultrasound. Clinical Radiology, 2002, 57, 157-177.	1.1	173
8	Developments in ultrasound contrast media. European Radiology, 2001, 11, 675-689.	4.5	156
9	Flow Velocity Mapping Using Contrast Enhanced High-Frame-Rate Plane Wave Ultrasound and Image Tracking: Methods and Initial inÂVitro and inÂVivo Evaluation. Ultrasound in Medicine and Biology, 2015, 41, 2913-2925.	1.5	147
10	Pulse-inversion mode imaging of liver specific microbubbles: improved detection of subcentimetre metastases. Lancet, The, 2000, 355, 807-808.	13.7	143
11	Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9225-9230.	7.1	128
12	Hepatic vein transit times using a microbubble agent can predict disease severity non-invasively in patients with hepatitis C. Gut, 2005, 54, 128-133.	12.1	127
13	Evidence for Spleen-specific Uptake of a Microbubble Contrast Agent: A Quantitative Study in Healthy Volunteers. Radiology, 2004, 231, 785-788.	7.3	123
14	Hepatic Malignancies: Improved Detection with Pulse-Inversion US in Late Phase of Enhancement with SH U 508A—Early Experience. Radiology, 2000, 216, 903-908.	7.3	119
15	Liver microbubble transit time compared with histology and Child-Pugh score in diffuse liver disease: a cross sectional study. Gut, 2003, 52, 1188-1193.	12.1	111
16	Stimulated acoustic emission in liver parenchyma with Levovist. Lancet, The, 1998, 351, 568.	13.7	104
17	Stimulated acoustic emission to image a late liver and spleen-specific phase of Levovist® in normal volunteers and patients with and without liver disease. Ultrasound in Medicine and Biology, 1999, 25, 1341-1352.	1.5	101
18	Liver vascular transit time analyzed with dynamic hepatic venography with bolus injections of an US contrast agent: early experience in seven patients with metastases Radiology, 1998, 209, 862-866.	7.3	96

#	Article	IF	CITATIONS
19	Do Different Types of Liver Lesions Differ in Their Uptake of the Microbubble Contrast Agent SH U 508A in the Late Liver Phase? Early Experience. Radiology, 2001, 220, 661-667.	7.3	96
20	Quantification of blood flow. European Radiology, 2001, 11, 1338-1344.	4.5	93
21	Two-Stage Motion Correction for Super-Resolution Ultrasound Imaging in Human Lower Limb. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 803-814.	3.0	89
22	Microbubble Stability is a Major Determinant of the Efficiency of Ultrasound and Microbubble Mediated in vivo Gene Transfer. Ultrasound in Medicine and Biology, 2009, 35, 976-984.	1.5	82
23	3D Super-Resolution US Imaging of Rabbit Lymph Node Vasculature in Vivo by Using Microbubbles. Radiology, 2019, 291, 642-650.	7.3	82
24	Quantitative microbubble enhanced transrectal ultrasound as a tool for monitoring hormonal treatment of prostate carcinoma. Prostate, 2002, 51, 256-267.	2.3	80
25	Ultrabubble: A Laminated Ultrasound Contrast Agent with Narrow Size Range. Advanced Materials, 2009, 21, 3949-3952.	21.0	80
26	Nonlinear propagation of ultrasound through microbubble contrast agents and implications for imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2406-2415.	3.0	78
27	Can Doppler Sonography Grade the Severity of Hepatitis C-Related Liver Disease?. American Journal of Roentgenology, 2005, 184, 1848-1853.	2.2	77
28	3-D Super-Resolution Ultrasound Imaging With a 2-D Sparse Array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 269-277.	3.0	74
29	Frequency and pressure dependent attenuation and scattering by microbubbles. Ultrasound in Medicine and Biology, 2007, 33, 164-168.	1.5	72
30	Microbubble Axial Localization Errors in Ultrasound Super-Resolution Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1644-1654.	3.0	70
31	Ultrasound-mediated optical tomography: a review of current methods. Interface Focus, 2011, 1, 632-648.	3.0	67
32	On Sizing and Counting of Microbubbles Using Optical Microscopy. Ultrasound in Medicine and Biology, 2010, 36, 2093-2096.	1.5	66
33	Effects of Nonlinear Propagation in Ultrasound Contrast Agent Imaging. Ultrasound in Medicine and Biology, 2010, 36, 459-466.	1.5	64
34	Temperature Dependent Behavior of Ultrasound Contrast Agents. Ultrasound in Medicine and Biology, 2010, 36, 925-934.	1.5	60
35	Acoustic wave sparsely activated localization microscopy (AWSALM): Super-resolution ultrasound imaging using acoustic activation and deactivation of nanodroplets. Applied Physics Letters, 2018, 113, .	3.3	59
36	A critical review of physiological bubble formation in hyperbaric decompression. Advances in Colloid and Interface Science, 2013, 191-192, 22-30.	14.7	58

#	Article	IF	CITATIONS
37	Circulatory bubble dynamics: From physical to biological aspects. Advances in Colloid and Interface Science, 2014, 206, 239-249.	14.7	55
38	Fast Acoustic Wave Sparsely Activated Localization Microscopy: Ultrasound Super-Resolution Using Plane-Wave Activation of Nanodroplets. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1039-1046.	3.0	53
39	Liver Lesions: Intermittent Second-Harmonic Gray-Scale US Can Increase Conspicuity with Microbubble Contrast Material—Early Experience. Radiology, 2000, 216, 592-596.	7.3	52
40	Hepatic Vein Transit Time of SonoVue: A Comparative Study with Levovist. Radiology, 2006, 240, 130-135.	7.3	52
41	Segmentation and analysis of colour Doppler images of tumour vasculature. Ultrasound in Medicine and Biology, 1995, 21, 635-647.	1.5	51
42	Pressure-dependent attenuation with microbubbles at low mechanical index. Ultrasound in Medicine and Biology, 2005, 31, 377-384.	1.5	51
43	Physical phenomena affecting quantitative imaging of ultrasound contrast agents. Applied Acoustics, 2009, 70, 1352-1362.	3.3	51
44	Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 232-251.	3.0	48
45	3-D <i>In Vitro</i> Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1478-1486.	3.0	48
46	Which continuous US scanning mode is optimal for the detection of vascularity in liver lesions when enhanced with a second generation contrast agent?. European Journal of Radiology, 2002, 41, 184-191.	2.6	44
47	Evaluation of Methods for Sizing and Counting of Ultrasound Contrast Agents. Ultrasound in Medicine and Biology, 2012, 38, 834-845.	1.5	42
48	High-speed optical observations and simulation results of SonoVue microbubbles at low-pressure insonation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 1333-1342.	3.0	40
49	Poisson Statistical Model of Ultrasound Super-Resolution Imaging Acquisition Time. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1246-1254.	3.0	40
50	A Targeting Microbubble for Ultrasound Molecular Imaging. PLoS ONE, 2015, 10, e0129681.	2.5	38
51	Coherent Multi-Transducer Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1316-1330.	3.0	34
52	Quantitative Power Doppler Ultrasonography Is a Sensitive Measure of Metacarpophalangeal Joint Synovial Vascularity in Rheumatoid Arthritis and Declines Significantly Following a 2-week Course of Oral Low-dose Corticosteroids. Journal of Rheumatology, 2010, 37, 2493-2501.	2.0	32
53	Theoretical and Experimental Characterisation of Magnetic Microbubbles. Ultrasound in Medicine and Biology, 2012, 38, 864-875.	1.5	32
54	Functional ultrasound methods in oncological imaging. European Journal of Cancer, 2002, 38, 2108-2115.	2.8	31

4

#	Article	IF	CITATIONS
55	High Frame-Rate Contrast Echocardiography: In-Human Demonstration. JACC: Cardiovascular Imaging, 2018, 11, 923-924.	5.3	29
56	Investigation of Microbubble Detection Methods for Super-Resolution Imaging of Microvasculature. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 676-691.	3.0	29
57	Attenuation Correction in Ultrasound Contrast Agent Imaging: Elementary Theory and Preliminary Experimental Evaluation. Ultrasound in Medicine and Biology, 2008, 34, 1998-2008.	1.5	28
58	High-Frame-Rate Tri-Plane Echocardiography With Spiral Arrays: From Simulation to Real-Time Implementation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 57-69.	3.0	28
59	Variability in circulating gas emboli after a same scuba diving exposure. European Journal of Applied Physiology, 2018, 118, 1255-1264.	2.5	27
60	Temperature-Dependent Differences in the Nonlinear Acoustic Behavior of Ultrasound Contrast Agents Revealed by High-Speed Imaging and Bulk Acoustics. Ultrasound in Medicine and Biology, 2011, 37, 1509-1517.	1.5	26
61	The Influence of Gas Saturation on Microbubble Stability. Ultrasound in Medicine and Biology, 2012, 38, 1097-1100.	1.5	26
62	Ultrasound Imaging Velocimetry: Effect of Beam Sweeping on Velocity Estimation. Ultrasound in Medicine and Biology, 2013, 39, 1672-1681.	1.5	26
63	Quantifying Activation of Perfluorocarbon-Based Phase-Change Contrast Agents Using Simultaneous Acoustic and Optical Observation. Ultrasound in Medicine and Biology, 2015, 41, 1422-1431.	1.5	26
64	Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography. Optics Express, 2011, 19, 7299.	3.4	23
65	Optimal Control of SonoVue Microbubbles to Estimate Hydrostatic Pressure. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 557-567.	3.0	22
66	Enhancement of power Doppler signals from breast lesions with the ultrasound contrast agent EchoGen emulsion: Subjective and quantitative assessment. Academic Radiology, 1998, 5, S195-S198.	2.5	21
67	Ultrasound Imaging with Microbubbles [Life Sciences]. IEEE Signal Processing Magazine, 2016, 33, 111-117.	5.6	21
68	Microbubble Contrast Agent Detection Using Binary Coded Pulses. Ultrasound in Medicine and Biology, 2007, 33, 1787-1795.	1.5	20
69	Stimulated acoustic emission imaging ("Sono-scintigraphyâ€) with the ultrasound contrast agent Levovist: A reproducible Doppler ultrasound effect with potential clinical utility. Academic Radiology, 1998, 5, S236-S239.	2.5	19
70	Influence of Needle Gauge On In Vivo Ultrasound and Microbubble-Mediated Gene Transfection. Ultrasound in Medicine and Biology, 2011, 37, 1531-1537.	1.5	19
71	Shear Wave Elasticity Imaging Based on Acoustic Radiation Force and Optical Detection. Ultrasound in Medicine and Biology, 2012, 38, 1637-1645.	1.5	19
72	Understanding the Structure and Mechanism of Formation of a New Magnetic Microbubble Formulation. Theranostics, 2012, 2, 1127-1139.	10.0	18

#	Article	IF	CITATIONS
73	Correction of Non-Linear Propagation Artifact in Contrast-Enhanced Ultrasound Imaging of Carotid Arteries: Methods and inÂVitro Evaluation. Ultrasound in Medicine and Biology, 2015, 41, 1938-1947.	1.5	18
74	Impact of Aperture, Depth, and Acoustic Clutter on the Performance of Coherent Multi-Transducer Ultrasound Imaging. Applied Sciences (Switzerland), 2020, 10, 7655.	2.5	18
75	Effect of bubble shell nonlinearity on ultrasound nonlinear propagation through microbubble populations. Journal of the Acoustical Society of America, 2011, 129, EL76-EL82.	1.1	16
76	The use of portable 2D echocardiography and 'frame-based' bubble counting as a tool to evaluate diving decompression stress. Diving and Hyperbaric Medicine, 2014, 44, 5-13.	0.5	15
77	Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224, 291-306.	1.8	14
78	Effect of Albumin and Dextrose Concentration on Ultrasound and Microbubble Mediated Gene Transfection InÂVivo. Ultrasound in Medicine and Biology, 2012, 38, 1067-1077.	1.5	14
79	Investigating the nonlinear microbubble response to chirp encoded, multipulse sequences. Ultrasound in Medicine and Biology, 2006, 32, 1887-1895.	1.5	13
80	Decompression induced bubble dynamics on ex vivo fat and muscle tissue surfaces with a new experimental set up. Colloids and Surfaces B: Biointerfaces, 2015, 129, 121-129.	5.0	13
81	Quantitative Ultrasound Molecular Imaging. Ultrasound in Medicine and Biology, 2015, 41, 2478-2496.	1.5	12
82	High-Frame-Rate Contrast Echocardiography Using Diverging Waves: Initial <i>In Vitro</i> and <i>In Vivo</i> Evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2212-2221.	3.0	12
83	Quantification of Vaporised Targeted Nanodroplets Using High-Frame-Rate Ultrasound and Optics. Ultrasound in Medicine and Biology, 2019, 45, 1131-1142.	1.5	12
84	Motion Artifacts and Correction in Multipulse High-Frame Rate Contrast-Enhanced Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 417-420.	3.0	12
85	An approximate nonlinear model for time gain compensation of amplitude modulated images of ultrasound contrast agent perfusion. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 818-829.	3.0	11
86	A comparison of 31P magnetic resonance spectroscopy and microbubble-enhanced ultrasound for characterizing hepatitis c-related liver disease. Journal of Viral Hepatitis, 2011, 18, e530-e534.	2.0	11
87	Coherent multi-transducer ultrasound imaging in the presence of aberration. , 2019, , .		11
88	Single Bubble Acoustic Characterization and Stability Measurement of Adherent Microbubbles. Ultrasound in Medicine and Biology, 2013, 39, 903-914.	1.5	10
89	Attenuation Correction and Normalisation for Quantification of Contrast Enhancement in Ultrasound Images of Carotid Arteries. Ultrasound in Medicine and Biology, 2015, 41, 1876-1883.	1.5	10
90	Ex vivo delineation of placental angioarchitecture with the microbubble contrast agent Levovist. American Journal of Obstetrics and Gynecology, 2000, 182, 966-971.	1.3	9

#	Article	IF	CITATIONS
91	P1F-4 High Speed Optical Observations and Simulation Results of Lipid Based Microbubbles at Low Insonation Pressures. , 2006, , .		9
92	Acoustic Wave Sparsely-Activated Localization Microscopy (AWSALM): In Vivo Fast Ultrasound Super-Resolution Imaging using Nanodroplets. , 2019, , .		9
93	Contrast-Enhanced Ultrasound: Basic Physics and Technology Overview. , 2006, , 3-14.		8
94	Measurement of the Reflectivity of the Intima-Medial Layer of the Common Carotid Artery Improves the Discriminatory Value of Intima-Medial Thickness Measurement as a Predictor of Risk of Atherosclerotic Disease. Ultrasound in Medicine and Biology, 2007, 33, 1029-1038.	1.5	8
95	Enhanced gene transfection in vivo using magnetic localisation of ultrasound contrast agents: Preliminary results. , 2010, , .		8
96	Comparison of pulse subtraction doppler and pulse inversion doppler. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 73-81.	3.0	8
97	Modeling non-spherical oscillations and stability of acoustically driven shelled microbubbles. Journal of the Acoustical Society of America, 2012, 131, 4349-4357.	1.1	8
98	3-D Motion Correction for Volumetric Super-Resolution Ultrasound Imaging. , 2018, 2018, .		8
99	Characterization of Focal Liver Lesions with Phase Inversion Ultrasound During the Late Liver-Specific Phase of Levovist. Academic Radiology, 2002, 9, S375.	2.5	7
100	Tracking shear waves in turbid medium by light: theory, simulation, and experiment. Optics Letters, 2014, 39, 1597.	3.3	7
101	Flow Visualization Through Locally Activated Nanodroplets and High Frame Rate Imaging. , 2018, , .		7
102	Ultrasound: General Principles. , 2008, , 55-77.		7
103	Effect of ultrasound on adherent microbubble contrast agents. Physics in Medicine and Biology, 2012, 57, 6999-7014.	3.0	6
104	Viscosity measurement based on shear-wave laser speckle contrast analysis. Journal of Biomedical Optics, 2013, 18, 121511.	2.6	6
105	Detecting tissue optical and mechanical properties with an ultrasound modulated optical imaging system in reflection detection geometry. Biomedical Optics Express, 2015, 6, 63.	2.9	6
106	Two stage sub-wavelength motion correction in human microvasculature for CEUS imaging. , 2017, , .		6
107	Localisation of multiple non-isolated microbubbles with frequency decomposition in super-resolution imaging. , 2017, , .		6
108	Extension of Coherent Multi-Transducer Ultrasound Imaging with Diverging Waves. , 2019, , .		6

Extension of Coherent Multi-Transducer Ultrasound Imaging with Diverging Waves. , 2019, , . 108

7

#	Article	IF	CITATIONS
109	Comparative study of experienced <i>vs</i> non-experienced radiologists in assessing parametric CT images of the response of the prostate gland to radiotherapy. British Journal of Radiology, 2008, 81, 572-576.	2.2	5
110	Ultrasound phase velocities in SonoVue [™] as a function of pressure and bubble concentration. , 2009, , .		5
111	Hepatic vein transit times of a microbubble agent in assessing response to antiviral treatment in patients with chronic hepatitis C. Journal of Viral Hepatitis, 2010, 17, 778-783.	2.0	5
112	Two Stage Sub-Wavelength Motion Correction in Human Microvasculature for CEUS Imaging. , 2017, , .		5
113	3D in Vitro Ultrasound Super-Resolution Imaging Using a Clinical System. , 2018, , .		5
114	Photoacoustic Super-Resolution Imaging using Laser Activation of Low-Boiling-Point Dye-Coated Nanodroplets in vitro and in vivo. , 2019, , .		5
115	Minimization of Nanodroplet Activation Time using Focused-Pulses for Droplet-Based Ultrasound Super-Resolution Imaging. , 2019, , .		5
116	Enhancement characteristics of the microbubble agent Levovist: reproducibility and interaction with aspirin. European Journal of Radiology, 2002, 41, 179-183.	2.6	4
117	Methodology for Imaging Time-Dependent Phenomena. , 2005, , 303-335.		4
118	P4D-7 Nonlinear Propagation of Ultrasound Through Microbubble Clouds: A Novel Numerical Implementation. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	4
119	Albumin Coated Microbubble Optimization: Custom Fabrication and Comprehensive Characterization. Ultrasound in Medicine and Biology, 2012, 38, 1599-1607.	1.5	4
120	Dual shear wave induced laser speckle contrast signal and the improvement in shear wave speed measurement. Biomedical Optics Express, 2015, 6, 1954.	2.9	4
121	3-D Super-Resolution Ultrasound Imaging Using a 2-D Sparse Array with High Volumetric Imaging Rate. , 2018, , .		4
122	Pulse Pileup Correction of Signals From a Pyroelectric Sensor for Phase-Insensitive Ultrasound Computed Tomography. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 3920-3931.	4.7	4
123	Phase-Insensitive Ultrasound Tomography of the Attenuation of Breast Phantoms. , 2019, , .		4
124	Super-Resolution Ultrasound Image Filtering with Machine-Learning to Reduce the Localization Error. , 2019, , .		4
125	The Effects of Hydrostatic Pressure on the Subharmonic Response of SonoVue and Sonazoid. , 2019, , .		4

#	Article	IF	CITATIONS
127	Coherent Multi-Transducer Ultrasound Imaging through aberrating media. , 2019, , .		3
128	Coherent Multi-Transducer Ultrasound Imaging with Microbubble Contrast Agents. , 2019, , .		3
129	Ring Artifact Correction for Phase-Insensitive Ultrasound Computed Tomography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 513-525.	3.0	3
130	A Novel Technique to Measure Splanchnic Transit Time Using Microbubble Ultrasound. Investigative Radiology, 2005, 40, 80-84.	6.2	2
131	Activation and 3D Imaging of Phase-change Nanodroplet Contrast Agents with a 2D Ultrasound Probe. , 2019, , .		2
132	A study on optical modulation signal and tissue displacement in ultrasound modulated optical tomography. , 2009, , .		1
133	Temperature behaviour of ultrasound contrast agents. , 2009, , .		1
134	Dynamics of Targeted Microbubble Adhesion Under Pulsatile Compared with Steady Flow. Ultrasound in Medicine and Biology, 2014, 40, 2445-2457.	1.5	1
135	Prospects for enhancement of targeted radionuclide therapy of cancer using ultrasound. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 279-284.	1.0	1
136	Effects of motion on high frame rate contrast enhanced echocardiography and its correction. , 2017, , .		1
137	Localisation of multiple non-isolated microbubbles with frequency decomposition in super-resolution imaging. , 2017, , .		1
138	Investigation of microbubble detection methods for super-resolution imaging of microvasculature. , 2017, , .		1
139	Cardiac flow mapping using high frame rate diverging wave contrast enhanced ultrasound and image tracking. , 2017, , .		1
140	Breast. Ultrasound in Medicine and Biology, 2000, 26, S110-S115.	1,5	0
141	Cyclosporine A Does Not Alter Ultrasonic Indices of Renal Blood Flow: A Potential Tool for Differentiating Toxicity from Acute Rejection?. Transplantation, 2005, 79, 731-734.	1.0	0
142	Quantitative Analysis of Parenchymal Flow at Contrast-Enhanced US. , 2005, , 383-391.		0
143	Use of a Microbubble Contrast Agent in the Evaluation of Cirrhotic Patients for Hepatopulmonary Syndrome: Preliminary Assessment of a Novel Technique. Ultrasound, 2005, 13, 100-105.	0.7	0
144	Dynamic Interactions between Contrast Agent Microbubbles: High Speed Camera Observations and Simulation Results. AIP Conference Proceedings, 2007, , .	0.4	0

#	Article	IF	CITATIONS
145	Verification of an image calibration method in ultrasound contrast agent imaging on a perfusion phantom. , 2009, , .		0
146	Comparison of pulse subtraction Doppler and pulse inversion Doppler. , 2009, , .		0
147	The effect of glucosamine on the acoustic and binding properties of albumin-based microbubbles (work in progress). , 2012, , .		Ο
148	Sound and Signals (Signals and Communication Technology). Ultrasound in Medicine and Biology, 2013, 39, 1518.	1.5	0
149	Biomedical Signal and Imaging Processing (Second Edition). Ultrasound in Medicine and Biology, 2014, 40, 1920.	1.5	0
150	Super-resolution imaging of microbubble contrast agents. , 2015, , .		0
151	Motion correction in contrast-enhanced ultrasound scans of carotid atherosclerotic plaques. , 2015, , .		Ο
152	A Temporal and Spatial Analysis Approach to Automated Segmentation of Microbubble Signals in Contrast-Enhanced Ultrasound Images: Application to Quantification of Active Vascular Density in Human Lower Limbs. Ultrasound in Medicine and Biology, 2017, 43, 2221-2234.	1.5	0
153	High frame rate contrast enhanced echocardiography: Microbubbles stability and contrast evaluation. , 2017, , .		Ο
154	Ultrasound super-resolution with microbubble contrast agents. , 2017, , .		0
155	Development of Simultaneous Optical Imaging and Super-Resolution Ultrasound to Improve Microbubble Localization Accuracy. , 2018, , .		Ο
156	Magnetic Microbubbles. , 2012, , 499-522.		0
157	Potential for Quantification. Medical Radiology, 1999, , 343-353.	0.1	Ο
158	Characterisation of Functionalised Microbubbles for Ultrasound Imaging and Therapy. , 2018, , 375-389.		0
159	Specific Imaging Techniques, Contrast Media, Ultrasound. , 2008, , 1696-1697.		0
160	Contrast Media, Ultrasound, Phase Modulation. , 2008, , 479-480.		0
161	Contrast Media, Ultrasound, Amplitude Modulation. , 2008, , 522-522.		0