Masato Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2032857/publications.pdf

Version: 2024-02-01

		218677	1	68389
57	8,064	26		53
papers	citations	h-index		g-index
58	58	58		12354
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Integrin α5 mediates cancer cell-fibroblast adhesion and peritoneal dissemination of diffuse-type gastric carcinoma. Cancer Letters, 2022, 526, 335-345.	7.2	7
2	CD169-positive macrophages enhance abscopal effect of radiofrequency ablation therapy in liver cancer. Translational Oncology, 2022, 15, 101306.	3.7	8
3	CD169 ⁺ macrophages in lymph node and spleen critically depend on dual RANK and LTbetaR signaling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
4	Synaptic pruning of murine adult-born neurons by microglia depends on phosphatidylserine. Journal of Experimental Medicine, 2022, 219, .	8.5	25
5	Frontline Science: Conversion of neutrophils into atypical Ly6G+SiglecF+ immune cells with neurosupportive potential in olfactory neuroepithelium. Journal of Leukocyte Biology, 2021, 109, 481-496.	3.3	10
6	Antibody Screening System Using a Herpes Simplex Virus (HSV)-Based Probe To Identify a Novel Target for Receptor-Retargeted Oncolytic HSVs. Journal of Virology, 2021, 95, .	3.4	3
7	Immunoregulatory Monocyte Subset Promotes Metastasis Associated With Therapeutic Intervention for Primary Tumor. Frontiers in Immunology, 2021, 12, 663115.	4.8	18
8	Tissue-resident macrophages promote early dissemination of multiple myeloma via IL-6 and TNFα. Blood Advances, 2021, 5, 3592-3608.	5. 2	17
9	Oxidized Phospholipids and Neutrophil Elastase Coordinately Play Critical Roles in NET Formation. Frontiers in Cell and Developmental Biology, 2021, 9, 718586.	3.7	18
10	Breast cancer cells promote CD169+ macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages. International Immunopharmacology, 2020, 78, 106012.	3.8	40
11	WNK1–TAK1 signaling suppresses lipopolysaccharide-induced cytokine production and classical activation in macrophages. Biochemical and Biophysical Research Communications, 2020, 533, 1290-1297.	2.1	5
12	CD204-positive monocytes and macrophages ameliorate septic shock by suppressing proinflammatory cytokine production in mice. Biochemistry and Biophysics Reports, 2020, 23, 100791.	1.3	6
13	Vitamin E Scaffolds of pH-Responsive Lipid Nanoparticles as DNA Vaccines in Cancer and Protozoan Infection. Molecular Pharmaceutics, 2020, 17, 1237-1247.	4.6	18
14	Development of a Water-Soluble Indolylmaleimide Derivative IM-93 Showing Dual Inhibition of Ferroptosis and NETosis. ACS Medicinal Chemistry Letters, 2019, 10, 1272-1278.	2.8	6
15	MT1-MMP recruits the ER-Golgi SNARE Bet1 for efficient MT1-MMP transport to the plasma membrane. Journal of Cell Biology, 2019, 218, 3355-3371.	5.2	20
16	Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood, 2019, 133, 1222-1232.	1.4	44
17	Lymph Node Mesenchymal and Endothelial Stromal Cells Cooperate via the RANK-RANKL Cytokine Axis to Shape the Sinusoidal Macrophage Niche. Immunity, 2019, 50, 1467-1481.e6.	14.3	78
18	Macrophage Transfer to HSCs Assigns Residence in Bone Marrow. Blood, 2019, 134, 276-276.	1.4	1

#	Article	IF	CITATIONS
19	Tumor Necrosis Factor-Mediated Survival of CD169 ⁺ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection. Journal of Virology, 2018, 92, .	3.4	16
20	Emergence of immunoregulatory Ym1 $<$ sup>+ $<$ /sup> Ly6C $<$ sup>hi $<$ /sup> monocytes during recovery phase of tissue injury. Science Immunology, 2018, 3, .	11.9	69
21	Generation of and characterization of anti-IL-11 antibodies using newly established Il11-deficient mice. Biochemical and Biophysical Research Communications, 2018, 505, 453-459.	2.1	11
22	G-CSF mediates lung injury in mice with adenine-induced acute kidney injury. International Immunopharmacology, 2018, 63, 1-8.	3.8	4
23	Macrophages Switch Their Phenotype by Regulating Maf Expression during Different Phases of Inflammation. Journal of Immunology, 2018, 201, 635-651.	0.8	33
24	CD169 macrophages regulate immune responses toward particulate materials in the circulating fluid. Journal of Biochemistry, 2018, 164, 77-85.	1.7	30
25	Programmed cell death and the immune system. Nature Reviews Immunology, 2017, 17, 333-340.	22.7	343
26	Macrophage Subset Expressing CD169 in Peritoneal Cavity-Regulated Mucosal Inflammation Together with Lower Levels of CCL22. Inflammation, 2017, 40, 1191-1203.	3.8	7
27	CD169 ⁺ macrophages orchestrate innate immune responses by regulating bacterial localization in the spleen. Science Immunology, 2017, 2, .	11.9	71
28	Salt suppresses IFN \hat{I}^3 inducible chemokines through the IFN \hat{I}^3 -JAK1-STAT1 signaling pathway in proximal tubular cells. Scientific Reports, 2017, 7, 46580.	3.3	2
29	Hyperoxidation of ether-linked phospholipids accelerates neutrophil extracellular trap formation. Scientific Reports, 2017, 7, 16026.	3.3	29
30	Depletion of myeloid cells exacerbates hepatitis and induces an aberrant increase in histone H3 in mouse serum. Hepatology, 2017, 65, 237-252.	7.3	12
31	CD169 Expressing Macrophage, a Key Subset in Mesenteric Lymph Nodes Promotes Mucosal Inflammation in Dextran Sulfate Sodium-Induced Colitis. Frontiers in Immunology, 2017, 8, 669.	4.8	21
32	CD11c+ resident macrophages drive hepatocyte death-triggered liver fibrosis in a murine model of nonalcoholic steatohepatitis. JCI Insight, 2017, 2, .	5.0	64
33	Regulation of B cell differentiation by the ubiquitin-binding protein TAX1BP1. Scientific Reports, 2016, 6, 31266.	3.3	18
34	Autophagy suppresses cell migration by degrading GEF-H1, a RhoA GEF. Oncotarget, 2016, 7, 34420-34429.	1.8	20
35	Development of Sentinel-Cell Targeted Therapy for Inflammatory Bowel Diseases. , 2016, , 617-626.		0
36	F4/80 Identifies a Subset of Non-Mobilizable Bone Marrow HSCs Involved in Stress-Induced Hematopoiesis. Blood, 2016, 128, 569-569.	1.4	0

#	Article	IF	CITATIONS
37	DC-SIGN+ Macrophages Control the Induction of Transplantation Tolerance. Immunity, 2015, 42, 1143-1158.	14.3	144
38	\hat{I}^3 -SNAP stimulates disassembly of endosomal SNARE complexes and regulates endocytic trafficking pathways. Journal of Cell Science, 2015, 128, 2781-94.	2.0	16
39	Vascular-Resident CD169-Positive Monocytes and Macrophages Control Neutrophil Accumulation in the Kidney with Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2015, 26, 896-906.	6.1	83
40	Identification of Pathogenic Cardiac CD11c ⁺ Macrophages in Nod1-Mediated Acute Coronary Arteritis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1423-1433.	2.4	32
41	Immune Regulation by Dead Cell Clearance. Current Topics in Microbiology and Immunology, 2015, 403, 171-183.	1.1	1
42	Intestinal CD169+ macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytes. Nature Communications, 2015, 6, 7802.	12.8	190
43	Marginal zone CD169 ⁺ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4215-4220.	7.1	98
44	Colony-Stimulating Factor-1 Signaling Suppresses Renal Crystal Formation. Journal of the American Society of Nephrology: JASN, 2014, 25, 1680-1697.	6.1	60
45	Dectin-2 Is a Direct Receptor for Mannose-Capped Lipoarabinomannan of Mycobacteria. Immunity, 2014, 41, 402-413.	14.3	243
46	CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nature Medicine, 2013, 19, 429-436.	30.7	370
47	Tissue-Resident Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating Monocytes. Immunity, 2013, 38, 792-804.	14.3	1,767
48	CD169+ Macrophages Regulate Erythropoiesis Under Homeostasis, Recovery From Erythron Injury and in JAK2V617F-Induced Polycythemia Vera. Blood, 2012, 120, 80-80.	1.4	0
49	CD169-Positive Macrophages Dominate Antitumor Immunity by Crosspresenting Dead Cell-Associated Antigens. Immunity, 2011, 34, 85-95.	14.3	385
50	Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. Journal of Experimental Medicine, 2011, 208, 261-271.	8.5	732
51	Inhibition of PTEN Tumor Suppressor Promotes the Generation of Induced Pluripotent Stem Cells. Blood, 2011, 118, 3122-3122.	1.4	0
52	xCT deficiency accelerates chemically induced tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6436-6441.	7.1	52
53	Novel Subset of CD8α+ Dendritic Cells Localized in the Marginal Zone Is Responsible for Tolerance to Cell-Associated Antigens. Journal of Immunology, 2009, 182, 4127-4136.	0.8	176
54	Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell–associated antigens. Journal of Clinical Investigation, 2007, 117, 2268-2278.	8.2	283

MASATO TANAKA

#	Article	IF	CITATIONS
55	Masking of Phosphatidylserine Inhibits Apoptotic Cell Engulfment and Induces Autoantibody Production in Mice. Journal of Experimental Medicine, 2004, 200, 459-467.	8.5	240
56	Autoimmune Disease and Impaired Uptake of Apoptotic Cells in MFG-E8-Deficient Mice. Science, 2004, 304, 1147-1150.	12.6	895
57	Identification of a factor that links apoptotic cells to phagocytes. Nature, 2002, 417, 182-187.	27.8	1,212