
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2032047/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Identification of Evolutionary Trajectories Associated with Antimicrobial Resistance Using Microfluidics. ACS Infectious Diseases, 2022, 8, 242-254.	3.8	10
2	Evolution of Enterococcus faecium in Response to a Combination of Daptomycin and Fosfomycin Reveals Distinct and Diverse Adaptive Strategies. Antimicrobial Agents and Chemotherapy, 2022, 66, e0233321.	3.2	6
3	Mutational Switch-Backs Can Accelerate Evolution of Francisella to a Combination of Ciprofloxacin and Doxycycline. Frontiers in Microbiology, 2022, 13, .	3.5	5
4	Microfluidic platform for spatially segregated experimental evolution studies with E. coli. STAR Protocols, 2022, 3, 101332.	1.2	7
5	Daptomycin Resistance in Enterococcus faecium Can Be Delayed by Disruption of the LiaFSR Stress Response Pathway. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	10
6	EfgA is a conserved formaldehyde sensor that leads to bacterial growth arrest in response to elevated formaldehyde. PLoS Biology, 2021, 19, e3001208.	5.6	13
7	Pathogenic Nocardia: A diverse genus of emerging pathogens or just poorly recognized?. PLoS Pathogens, 2020, 16, e1008280.	4.7	54
8	Environment Shapes the Accessible Daptomycin Resistance Mechanisms in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	30
9	The Essential Role of Hypermutation in Rapid Adaptation to Antibiotic Stress. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	39
10	Disrupting Membrane Adaptation Restores In Vivo Efficacy of Antibiotics Against Multidrug-Resistant Enterococci and Potentiates Killing by Human Neutrophils. Journal of Infectious Diseases, 2019, 220, 494-504.	4.0	6
11	Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in <i>Enterococcus faecalis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26925-26932.	7.1	58
12	LiaRâ€independent pathways to daptomycin resistance in <i>Enterococcus faecalis</i> reveal a multilayer defense against cell envelope antibiotics. Molecular Microbiology, 2019, 111, 811-824.	2.5	26
13	Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance. Journal of Antibiotics, 2018, 71, 279-286.	2.0	26
14	Two Mutations Commonly Associated with Daptomycin Resistance in Enterococcus faecium LiaST120A and LiaRW73C Appear To Function Epistatically in LiaFSR Signaling. Biochemistry, 2018, 57, 6797-6805.	2.5	12
15	A Novel Phosphodiesterase of the GdpP Family Modulates Cyclic di-AMP Levels in Response to Cell Membrane Stress in Daptomycin-Resistant Enterococci. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	24
16	Asymmetric Alkylation of Anthrones, Enantioselective Total Synthesis of (â^')- and (+)-Viridicatumtoxins B and Analogues Thereof: Absolute Configuration and Potent Antibacterial Agents. Journal of the American Chemical Society, 2017, 139, 3736-3746.	13.7	32
17	Experimental Evolution of Diverse Strains as a Method for the Determination of Biochemical Mechanisms of Action for Novel Pyrrolizidinone Antibiotics. ACS Infectious Diseases, 2017, 3, 854-865.	3.8	6
18	Enantioselective Total Synthesis of Antibiotic CJ-16,264, Synthesis and Biological Evaluation of Designed Analogues, and Discovery of Highly Potent and Simpler Antibacterial Agents. Journal of the American Chemical Society, 2017, 139, 15868-15877.	13.7	19

#	Article	IF	CITATIONS
19	Differential Penicillin-Binding Protein 5 (PBP5) Levels in the Enterococcus faecium Clades with Different Levels of Ampicillin Resistance. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	42
20	Using cellular fitness to map the structure and function of a major facilitator superfamily effluxer. Molecular Systems Biology, 2017, 13, 964.	7.2	6
21	An Adaptive Mutation in Enterococcus faecium LiaR Associated with Antimicrobial Peptide Resistance Mimics Phosphorylation and Stabilizes LiaR in an Activated State. Journal of Molecular Biology, 2016, 428, 4503-4519.	4.2	39
22	Targeting cell membrane adaptation as a novel antimicrobial strategy. Current Opinion in Microbiology, 2016, 33, 91-96.	5.1	20
23	Acinetobacter baumannii Repeatedly Evolves a Hypermutator Phenotype in Response to Tigecycline That Effectively Surveys Evolutionary Trajectories to Resistance. PLoS ONE, 2015, 10, e0140489.	2.5	59
24	A variable DNA recognition site organization establishes the LiaR-mediated cell envelope stress response of enterococci to daptomycin. Nucleic Acids Research, 2015, 43, 4758-4773.	14.5	47
25	Rampant Parasexuality Evolves in a Hospital Pathogen during Antibiotic Selection. Molecular Biology and Evolution, 2015, 32, 2585-2597.	8.9	31
26	The Ribosomal S10 Protein Is a General Target for Decreased Tigecycline Susceptibility. Antimicrobial Agents and Chemotherapy, 2015, 59, 5561-5566.	3.2	106
27	Deletion of <i>liaR</i> Reverses Daptomycin Resistance in Enterococcus faecium Independent of the Genetic Background. Antimicrobial Agents and Chemotherapy, 2015, 59, 7327-7334.	3.2	41
28	A liaR Deletion Restores Susceptibility to Daptomycin and Antimicrobial Peptides in Multidrug-Resistant Enterococcus faecalis. Journal of Infectious Diseases, 2015, 211, 1317-1325.	4.0	80
29	Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments. PLoS Genetics, 2014, 10, e1004872.	3.5	50
30	Adaptation of Enterococcus faecalis to Daptomycin Reveals an Ordered Progression to Resistance. Antimicrobial Agents and Chemotherapy, 2014, 58, 631-631.	3.2	0
31	Total Synthesis of Viridicatumtoxin B and Analogues Thereof: Strategy Evolution, Structural Revision, and Biological Evaluation. Journal of the American Chemical Society, 2014, 136, 12137-12160.	13.7	48
32	Structure analysis of free and bound states of an RNA aptamer against ribosomal protein S8 from Bacillus anthracis. Nucleic Acids Research, 2014, 42, 10795-10808.	14.5	26
33	Whole-Genome Analyses of Enterococcus faecium Isolates with Diverse Daptomycin MICs. Antimicrobial Agents and Chemotherapy, 2014, 58, 4527-4534.	3.2	119
34	Biochemical Characterization of Cardiolipin Synthase Mutations Associated with Daptomycin Resistance in Enterococci. Antimicrobial Agents and Chemotherapy, 2013, 57, 289-296.	3.2	71
35	Daptomycin-Resistant Enterococcus faecalis Diverts the Antibiotic Molecule from the Division Septum and Remodels Cell Membrane Phospholipids. MBio, 2013, 4, .	4.1	152
36	Whole-Genome Analysis of a Daptomycin-Susceptible Enterococcus faecium Strain and Its Daptomycin-Resistant Variant Arising during Therapy. Antimicrobial Agents and Chemotherapy, 2013, 57, 261-268.	3.2	101

#	Article	IF	CITATIONS
37	Adaptation of Enterococcus faecalis to Daptomycin Reveals an Ordered Progression to Resistance. Antimicrobial Agents and Chemotherapy, 2013, 57, 5373-5383.	3.2	102
38	Small changes in enzyme function can lead to surprisingly large fitness effects during adaptive evolution of antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21408-21413.	7.1	50
39	Daptomycin Resistance in Enterococci Is Associated with Distinct Alterations of Cell Membrane Phospholipid Content. PLoS ONE, 2012, 7, e43958.	2.5	126
40	Genetic Basis for In Vivo Daptomycin Resistance in Enterococci. New England Journal of Medicine, 2011, 365, 892-900.	27.0	324
41	Crystal structure of <i>Bacteroides thetaiotaomicron</i> TetX2: A tetracycline degrading monooxygenase at 2.8 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2335-2340.	2.6	16
42	Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection. Molecular Systems Biology, 2010, 6, 387.	7.2	38
43	Crystal structure of a trimeric archaeal adenylate kinase from the mesophile <i>Methanococcus maripaludis</i> with an unusually broad functional range and thermal stability. Proteins: Structure, Function and Bioinformatics, 2010, 78, 357-364.	2.6	11
44	Evolution of a single gene highlights the complexity underlying molecular descriptions of fitness. Chaos, 2010, 20, 026107.	2.5	6
45	Experimental Evolution of Adenylate Kinase Reveals Contrasting Strategies toward Protein Thermostability. Biophysical Journal, 2010, 99, 887-896.	0.5	26
46	Structural studies of an RNA aptamerâ€with high affinity for the B. anthracis ribosomal protein S8 FASEB Journal, 2010, 24, 499.1.	0.5	0
47	Biophysical basis for TetX mediated antibiotic resistance. FASEB Journal, 2010, 24, 909.2.	0.5	1
48	Pseudosymmetry, high copy number and twinning complicate the structure determination ofDesulfovibrio desulfuricans(ATCC 29577) flavodoxin. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 523-534.	2.5	7
49	Structure and biochemical characterization of an adenylate kinase originating from the psychrophilic organism <i>Marinibacillus marinus</i> . Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 751-756.	0.7	18
50	An adaptive mutation in adenylate kinase that increases organismal fitness is linked to stability-activity trade-offs. Protein Engineering, Design and Selection, 2007, 21, 19-27.	2.1	32
51	Mutation of E1-CONJUGATING ENZYME-RELATED1 Decreases RELATED TO UBIQUITIN Conjugation and Alters Auxin Response and Development. Plant Physiology, 2007, 144, 976-987.	4.8	30
52	Structure and enzymatic properties of a chimeric bacteriophage RB69 DNA polymerase and single-stranded DNA binding protein with increased processivity. Proteins: Structure, Function and Bioinformatics, 2006, 65, 231-238.	2.6	18
53	In Vivo Molecular Evolution Reveals Biophysical Origins of Organismal Fitness. Molecular Cell, 2006, 22, 441-449.	9.7	92
54	Complex of Calmodulin with a Ryanodine Receptor Target Reveals a Novel, Flexible Binding Mode. Structure, 2006, 14, 1547-1556.	3.3	121

4

#	Article	IF	CITATIONS
55	A 60-Kilodalton Protein Component of the Counting Factor Complex Regulates Group Size in Dictyostelium discoideum. Eukaryotic Cell, 2006, 5, 1532-1538.	3.4	17
56	Gene replacement of adenylate kinase in the gram-positive thermophile Geobacillus stearothermophilus disrupts adenine nucleotide homeostasis and reduces cell viability. Extremophiles, 2005, 9, 135-144.	2.3	31
57	Structural and Thermodynamic Analysis of Human PCNA with Peptides Derived from DNA Polymerase-Î ^r p66 Subunit and Flap Endonuclease-1. Structure, 2004, 12, 2209-2219.	3.3	190
58	Human UP1 as a Model for Understanding Purine Recognition in the Family of Proteins Containing the RNA Recognition Motif (RRM). Journal of Molecular Biology, 2004, 342, 743-756.	4.2	41
59	Structural insights into BRCA2 function. Current Opinion in Structural Biology, 2003, 13, 206-211.	5.7	20
60	Structure-based Incorporation of 6-Methyl-8-(2-deoxy-β-ribofuranosyl)isoxanthopteridine into the Human Telomeric Repeat DNA as a Probe for UP1 Binding and Destabilization of G-tetrad Structures. Journal of Biological Chemistry, 2003, 278, 42300-42306.	3.4	44
61	Biochemical Characterization of Interactions between DNA Polymerase and Single-stranded DNA-binding Protein in Bacteriophage RB69. Journal of Biological Chemistry, 2003, 278, 3876-3881.	3.4	20
62	Structure-based analysis of protein-RNA interactions using the program ENTANGLE. Journal of Molecular Biology, 2001, 311, 75-86.	4.2	241
63	Building a Replisome from Interacting Pieces. Cell, 1999, 99, 155-166.	28.9	368
64	Phase Improvement by Multi-Start Simulated Annealing Refinement and Structure-Factor Averaging. Journal of Applied Crystallography, 1998, 31, 798-805.	4.5	28
65	Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature, 1995, 376, 362-366.	27.8	252
66	Multiple RNA binding domains (RBDs) just don't add up. Nucleic Acids Research, 1995, 23, 725-728.	14.5	134
67	Both RNA-Binding Domains in Heterogeneous Nuclear Ribonucleoprotein A1 Contribute Toward Single-Stranded-RNA Binding. Biochemistry, 1994, 33, 8272-8281.	2.5	71
68	Translational Repression by the Bacteriophage T4 Gene 32 Protein Involves Specific Recognition of an RNA Pseudoknot Structure. Journal of Molecular Biology, 1993, 232, 89-104.	4.2	46
69	Photochemical crosslinking of bacteriophage T4 single-stranded DNA-binding protein (gp32) to oligo-p(dT)8: Identification of phenylalanine-183 as the site of crosslinking. Proteins: Structure, Function and Bioinformatics, 1988, 4, 1-6.	2.6	40
70	Protein chemistry-nuclear magnetic resonance approach to mapping functional domains in single-stranded DNA binding proteins. Journal of Cellular Biochemistry, 1986, 32, 305-326.	2.6	14