
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2032012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective ferroptosis vulnerability due to familial Alzheimer's disease presenilin mutations. Cell Death and Differentiation, 2022, 29, 2123-2136.	11.2	32
2	An Optimized Direct Lysis Gene Expression Microplate Assay and Applications for Disease, Differentiation, and Pharmacological Cell-Based Studies. Biosensors, 2022, 12, 364.	4.7	2
3	The P2X4 Receptor: Cellular and Molecular Characteristics of a Promising Neuroinflammatory Target. International Journal of Molecular Sciences, 2022, 23, 5739.	4.1	12
4	Neuronal hyperexcitability in Alzheimer's disease: what are the drivers behind this aberrant phenotype?. Translational Psychiatry, 2022, 12, .	4.8	64
5	Automated Liquid Handling for Microplate Assays: a Simplified User Interface for the Hamilton Microlab STAR. Journal of Applied Bioanalysis, 2021, 7, 11-18.	0.2	4
6	Generation of <i>APOE</i> knock-down SK-N-SH human neuroblastoma cells using CRISPR/Cas9: a novel cellular model relevant to Alzheimer's disease research. Bioscience Reports, 2021, 41, .	2.4	4
7	Understanding the pathology of psychiatric disorders in refugees. Psychiatry Research, 2021, 296, 113661.	3.3	3
8	Unbiased Label-Free Quantitative Proteomics of Cells Expressing Amyotrophic Lateral Sclerosis (ALS) Mutations in CCNF Reveals Activation of the Apoptosis Pathway: A Workflow to Screen Pathogenic Gene Mutations. Frontiers in Molecular Neuroscience, 2021, 14, 627740.	2.9	12
9	The role of amyloid oligomers in neurodegenerative pathologies. International Journal of Biological Macromolecules, 2021, 181, 582-604.	7.5	38
10	Cross-Linking Cellular Prion Protein Induces Neuronal Type 2-Like Hypersensitivity. Frontiers in Immunology, 2021, 12, 639008.	4.8	3
11	Role of EphA4 in Mediating Motor Neuron Death in MND. International Journal of Molecular Sciences, 2021, 22, 9430.	4.1	6
12	A Simple Microplate Assay for Reactive Oxygen Species Generation and Rapid Cellular Protein Normalization. Bio-protocol, 2021, 11, e3877.	0.4	18
13	Treatment of microglia with Anti-PrP monoclonal antibodies induces neuronal apoptosis in vitro. Heliyon, 2021, 7, e08644.	3.2	2
14	Modeling Emergent Properties in the Brain Using Tissue Models to Investigate Neurodegenerative Disease. Neuroscientist, 2020, 26, 224-230.	3.5	3
15	Sensitive Detection of Motor Neuron Disease Derived Exosomal miRNA Using Electrocatalytic Activity of Goldâ€Loaded Superparamagnetic Ferric Oxide Nanocubes. ChemElectroChem, 2020, 7, 3459-3467.	3.4	16
16	Neurodegenerative disease-associated protein aggregates are poor inducers of the heat shock response in neuronal cells. Journal of Cell Science, 2020, 133, .	2.0	6
17	P2Y2 and P2X4 Receptors Mediate Ca2+ Mobilization in DH82 Canine Macrophage Cells. International Journal of Molecular Sciences, 2020, 21, 8572.	4.1	18
18	A Simple Differentiation Protocol for Generation of Induced Pluripotent Stem Cell-Derived Basal Forebrain-Like Cholinergic Neurons for Alzheimer's Disease and Frontotemporal Dementia Disease Modeling. Cells, 2020, 9, 2018.	4.1	27

#	Article	IF	CITATIONS
19	Molecular and Functional Characterization of Neurogenin-2 Induced Human Sensory Neurons. Frontiers in Cellular Neuroscience, 2020, 14, 600895.	3.7	16
20	Identification of repurposable cytoprotective drugs in vanishing white matter disease patient-derived cells. Translational Medicine Communications, 2020, 5, .	1.4	7
21	Pharmacological and genetic characterisation of the canine P2X4 receptor. British Journal of Pharmacology, 2020, 177, 2812-2829.	5.4	11
22	lf Human Brain Organoids Are the Answer to Understanding Dementia, What Are the Questions?. Neuroscientist, 2020, 26, 438-454.	3.5	23
23	The mRNA-based reprogramming of fibroblasts from a SOD1E101G familial amyotrophic lateral sclerosis patient to induced pluripotent stem cell line UOWi007. Stem Cell Research, 2020, 42, 101701.	0.7	4
24	More than a Corepressor: The Role of CoREST Proteins in Neurodevelopment. ENeuro, 2020, 7, ENEURO.0337-19.2020.	1.9	20
25	Loss of Cln5 leads to altered Gad1 expression and deficits in interneuron development in mice. Human Molecular Genetics, 2019, 28, 3309-3322.	2.9	9
26	Generation and characterization of a human induced pluripotent stem cell line UOWi005-A from dermal fibroblasts derived from a CCNF familial amyotrophic lateral sclerosis patient using mRNA reprogramming. Stem Cell Research, 2019, 40, 101530.	0.7	6
27	PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Reports, 2019, 13, 669-683.	4.8	132
28	The Ubiquitin Proteasome System Is a Key Regulator of Pluripotent Stem Cell Survival and Motor Neuron Differentiation. Cells, 2019, 8, 581.	4.1	31
29	DC and AC magnetic fields increase neurite outgrowth of SH-SY5Y neuroblastoma cells with and without retinoic acid. RSC Advances, 2019, 9, 17717-17725.	3.6	2
30	Increased Tau Phosphorylation in Motor Neurons From Clinically Pure Sporadic Amyotrophic Lateral Sclerosis Patients. Journal of Neuropathology and Experimental Neurology, 2019, 78, 605-614.	1.7	19
31	The metastability of the proteome of spinal motor neurons underlies their selective vulnerability in ALS. Neuroscience Letters, 2019, 704, 89-94.	2.1	22
32	Dynamic interplay between H-current and M-current controls motoneuron hyperexcitability in amyotrophic lateral sclerosis. Cell Death and Disease, 2019, 10, 310.	6.3	38
33	Understanding the Role of ApoE Fragments in Alzheimer's Disease. Neurochemical Research, 2019, 44, 1297-1305.	3.3	51
34	Novel dualâ€action prodrug triggers apoptosis in glioblastoma cells by releasing a glutathione quencher and lysineâ€specific histone demethylase 1A inhibitor. Journal of Neurochemistry, 2019, 149, 535-550.	3.9	11
35	Wnt is here! Could Wnt signalling be promoted to protect against Alzheimer disease?. Journal of Neurochemistry, 2018, 144, 356-359.	3.9	6
36	The serine protease HtrA1 contributes to the formation of an extracellular 25-kDa apolipoprotein E fragment that stimulates neuritogenesis. Journal of Biological Chemistry, 2018, 293, 4071-4084.	3.4	19

#	Article	IF	CITATIONS
37	Impairments in Motor Neurons, Interneurons and Astrocytes Contribute to Hyperexcitability in ALS: Underlying Mechanisms and Paths to Therapy. Molecular Neurobiology, 2018, 55, 1410-1418.	4.0	58
38	Effects of short- and long-term aripiprazole treatment on Group I mGluRs in the nucleus accumbens: Comparison with haloperidol. Psychiatry Research, 2018, 260, 152-157.	3.3	2
39	Viral-free generation and characterization of a human induced pluripotent stem cell line from dermal fibroblasts. Stem Cell Research, 2018, 32, 135-138.	0.7	9
40	Chronic Adolescent CDPPB Treatment Alters Short-Term, but not Long-Term, Glutamatergic Receptor Expression. Neurochemical Research, 2018, 43, 1683-1691.	3.3	3
41	Astrocytic modulation of cortical oscillations. Scientific Reports, 2018, 8, 11565.	3.3	48
42	Generation and characterization of human induced pluripotent stem cell lines from a familial Alzheimer's disease PSEN1 A246E patient and a non-demented family member bearing wild-type PSEN1. Stem Cell Research, 2018, 31, 227-230.	0.7	11
43	Identification and High-Resolution Imaging of α-Tocopherol from Human Cells to Whole Animals by TOF-SIMS Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2018, 29, 1571-1581.	2.8	17
44	A postmortem analysis of NMDA ionotropic and group 1 metabotropic glutamate receptors in the nucleus accumbens in schizophrenia. Journal of Psychiatry and Neuroscience, 2018, 43, 102-110.	2.4	9
45	Nanotechnology and its medical applications: revisiting public policies from a regulatory perspective in Australia. Nanotechnology Reviews, 2017, 6, 255-269.	5.8	8
46	Electrochemical biosensing strategies for DNA methylation analysis. Biosensors and Bioelectronics, 2017, 94, 63-73.	10.1	60
47	The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Molecular Neurodegeneration, 2017, 12, 65.	10.8	60
48	Nitric Oxide: A Regulator of Cellular Function in Health and Disease. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-2.	4.0	19
49	Getting to NO Alzheimer's Disease: Neuroprotection versus Neurotoxicity Mediated by Nitric Oxide. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-8.	4.0	98
50	Common pitfalls of stem cell differentiation: a guide to improving protocols for neurodegenerative disease models and research. Cellular and Molecular Life Sciences, 2016, 73, 3693-3709.	5.4	57
51	Walking the tightrope: proteostasis and neurodegenerative disease. Journal of Neurochemistry, 2016, 137, 489-505.	3.9	176
52	Neurodevelopmental Expression Profile of Dimeric and Monomeric Group 1 mGluRs: Relevance to Schizophrenia Pathogenesis and Treatment. Scientific Reports, 2016, 6, 34391.	3.3	23
53	Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer's disease. Scientific Reports, 2016, 6, 31450.	3.3	186
54	Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8–B4 microglia. Neurochemistry International, 2016, 95, 46-54.	3.8	44

#	Article	IF	CITATIONS
55	Consumption of pomegranates improves synaptic function in a transgenic mice model of Alzheimer's disease. Oncotarget, 2016, 7, 64589-64604.	1.8	46
56	Evaluation of Skin Fibroblasts from Amyotrophic Lateral Sclerosis Patients for the Rapid Study of Pathological Features. Neurotoxicity Research, 2015, 28, 138-146.	2.7	30
57	SOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagation. Molecular Neurodegeneration, 2015, 10, 57.	10.8	68
58	Redox and Nitric Oxide-Mediated Regulation of Sensory Neuron Ion Channel Function. Antioxidants and Redox Signaling, 2015, 22, 486-504.	5.4	58
59	The Thiol Antioxidant Lipoic Acid and Alzheimer's Disease. , 2014, , 2275-2288.		4
60	Anti-inflammatory effects of five commercially available mushroom species determined in lipopolysaccharide and interferon-γ activated murine macrophages. Food Chemistry, 2014, 148, 92-96.	8.2	49
61	Determination of anti-inflammatory activities of standardised preparations of plant- and mushroom-based foods. European Journal of Nutrition, 2014, 53, 335-343.	3.9	31
62	Proenergetic effects of resveratrol in the murine neuronal cell line Neuro2a. Molecular Nutrition and Food Research, 2013, 57, 1901-1907.	3.3	8
63	Generation of hydrogen peroxide-resistant murine neuroblastoma cells: a target discovery platform for novel neuroprotective genes. Journal of Neural Transmission, 2013, 120, 1171-1178.	2.8	5
64	M-Type K+ Channel as Plasma Membrane Nitric Oxide and Reactive Oxygen Species Sensor. Biophysical Journal, 2013, 104, 268a-269a.	0.5	0
65	Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biology, 2013, 1, 441-445.	9.0	113
66	Chronic Inflammation Alters Production and Release of Glutathione and Related Thiols in Human U373 Astroglial Cells. Cellular and Molecular Neurobiology, 2013, 33, 19-30.	3.3	45
67	Cytoprotective properties of traditional Chinese medicinal herbal extracts in hydrogen peroxide challenged human U373 astroglia cells. Neurochemistry International, 2013, 62, 522-529.	3.8	19
68	Mammalian Expression Systems and Transfection Techniques. Methods in Molecular Biology, 2013, 998, 21-32.	0.9	1
69	Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer's disease. Journal of Neural Transmission, 2013, 120, 103-111.	2.8	47
70	Triple Cysteine Module within M-Type K ⁺ Channels Mediates Reciprocal Channel Modulation by Nitric Oxide and Reactive Oxygen Species. Journal of Neuroscience, 2013, 33, 6041-6046.	3.6	44
71	Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer's disease. FASEB Journal, 2013, 27, 78.3.	0.5	0
72	Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1578-86.	7.1	83

#	Article	IF	CITATIONS
73	Development of a high-performance liquid chromatography method for the simultaneous quantitation of glutathione and related thiols. Analytical Biochemistry, 2012, 429, 45-52.	2.4	32
74	A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: the N-acetyl-l-cysteine assay. Analytical and Bioanalytical Chemistry, 2012, 403, 2577-2581.	3.7	180
75	Potent Suppressive Effect of Resveratrol and Apigenin on Proâ€Inflammatory Responses in Lipopolysaccharide and IFNâ€Î³â€activated Microglia and Macrophages: Implications for Alzheimer's disease therapies. FASEB Journal, 2012, 26, 921.2.	0.5	0
76	Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain, 2011, 152, 742-754.	4.2	130
77	Understanding inflammatory pain: ion channels contributing to acute and chronic nociception. Pflugers Archiv European Journal of Physiology, 2010, 459, 657-669.	2.8	104
78	Transcriptional Control of <i>KCNQ</i> Channel Genes and the Regulation of Neuronal Excitability. Journal of Neuroscience, 2010, 30, 13235-13245.	3.6	93
79	Substance P and Bradykinin Activate Alternative Gq/11-Coupled Signalling Cascades and Impose Opposite Effects on M Current in DRG Neurons. Biophysical Journal, 2010, 98, 135a-136a.	0.5	0
80	The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl– channels. Journal of Clinical Investigation, 2010, 120, 1240-1252.	8.2	264
81	Substance P triggers two different signaling pathways with opposing actions on M current mediated by intracellular Ca2+ rises and oxidative modification. FASEB Journal, 2010, 24, lb25.	0.5	0
82	Regulation Of Kcnq2/3 Channels By The Transcriptional Repressor REST In Nociception. Biophysical Journal, 2009, 96, 175a-176a.	0.5	0
83	Regulation of gene expression in the nervous system. Biochemical Journal, 2008, 414, 327-341.	3.7	60
84	Chromatin switching and transcriptional regulation in disease. Biochemical Society Transactions, 2008, 36, 599-602.	3.4	2
85	Identifying Transcriptional Regulatory Regions Using Reporter Genes and DNA—Protein Interactions by Chromatin Immunoprecipitation. Methods in Molecular Biology, 2008, 491, 3-17.	0.9	1
86	Widespread Disruption of Repressor Element-1 Silencing Transcription Factor/Neuron-Restrictive Silencer Factor Occupancy at Its Target Genes in Huntington's Disease. Journal of Neuroscience, 2007, 27, 6972-6983.	3.6	257
87	The Repressor Element 1-Silencing Transcription Factor Regulates Heart-Specific Gene Expression Using Multiple Chromatin-Modifying Complexes. Molecular and Cellular Biology, 2007, 27, 4082-4092.	2.3	50
88	Chromatin crosstalk in development and disease: lessons from REST. Nature Reviews Genetics, 2007, 8, 544-554.	16.3	359
89	Investigating chromatin regulation by the repressor element 1â€silencing transcription factor (REST) and its effect in cardiac hypertrophy. FASEB Journal, 2007, 21, A654.	0.5	0
90	Multiple chromatin modifications important for gene expression changes in cardiac hypertrophy. Biochemical Society Transactions, 2006, 34, 1138-1140.	3.4	6

#	Article	IF	CITATIONS
91	The transcriptional repressor REST is a critical regulator of the neurosecretory phenotype. Journal of Neurochemistry, 2006, 98, 1828-1840.	3.9	42
92	Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Research, 2006, 34, 3862-3877.	14.5	121
93	BRG1 Chromatin Remodeling Activity Is Required for Efficient Chromatin Binding by Repressor Element 1-silencing Transcription Factor (REST) and Facilitates REST-mediated Repression. Journal of Biological Chemistry, 2006, 281, 38974-38980.	3.4	93
94	Comparison of effects of anandamide at recombinant and endogenous rat vanilloid receptors. British Journal of Anaesthesia, 2002, 89, 882-887.	3.4	35
95	TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature, 2002, 418, 186-190.	27.8	743