Frederico Gueiros Filho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/203195/publications.pdf

Version: 2024-02-01

414414 430874 1,977 32 18 citations h-index papers

g-index 33 33 33 2220 docs citations times ranked citing authors all docs

32

#	Article	IF	CITATIONS
1	Noc Corrals Migration of FtsZ Protofilaments during Cytokinesis in Bacillus subtilis. MBio, 2021, 12, .	4.1	19
2	The Division Defect of a <i>Bacillus subtilis minD noc</i> Double Mutant Can Be Suppressed by Spx-Dependent and Spx-Independent Mechanisms. Journal of Bacteriology, 2021, 203, e0024921.	2.2	5
3	Many birds with one stone: targeting the (p)ppGpp signaling pathway of bacteria to improve antimicrobial therapy. Biophysical Reviews, 2021, 13, 1039-1051.	3.2	4
4	Membrane fluidity adjusts the insertion of the transacylase PlsX to regulate phospholipid biosynthesis in Gram-positive bacteria. Journal of Biological Chemistry, 2020, 295, 2136-2147.	3.4	14
5	The phosphatidic acid pathway enzyme PlsX plays both catalytic and channeling roles in bacterial phospholipid synthesis. Journal of Biological Chemistry, 2020, 295, 2148-2159.	3.4	9
6	Violacein Targets the Cytoplasmic Membrane of Bacteria. ACS Infectious Diseases, 2019, 5, 539-549.	3.8	58
7	Where do we aspire to publish? A position paper on scientific communication in biochemistry and molecular biology. Brazilian Journal of Medical and Biological Research, 2019, 52, e8935.	1.5	1
8	Association of magnetotactic multicellular prokaryotes with Pseudoalteromonas species in a natural lagoon environment. Antonie Van Leeuwenhoek, 2018, 111, 2213-2223.	1.7	4
9	Synthesis, biophysical and functional studies of two BP100 analogues modified by a hydrophobic chain and a cyclic peptide. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1502-1516.	2.6	20
10	The stringent response plays a key role in <scp><i>B</i></scp> <i>acid starvation. Molecular Microbiology, 2017, 103, 698-712.</i>	2.5	36
11	Revisiting the cell biology of the acylâ€ACP:phosphate transacylase PlsX suggests that the phospholipid synthesis and cell division machineries are not coupled in ⟨scp⟩⟨i⟩B⟨ i⟩⟨ scp⟩⟨i⟩acillus subtilis⟨ i⟩. Molecular Microbiology, 2016, 100, 621-634.	2.5	13
12	Backbone and side chain NMR assignments of Geobacillus stearothermophilus ZapA allow identification of residues that mediate the interaction of ZapA with FtsZ. Biomolecular NMR Assignments, 2015, 9, 387-391.	0.8	1
13	FtsZ filament capping by MciZ, a developmental regulator of bacterial division. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2130-8.	7.1	65
14	Backbone and side chain NMR assignments for the N-terminal domain of the cell division regulator MinC from Bacillus subtilis. Biomolecular NMR Assignments, 2015, 9, 1-5.	0.8	3
15	Genetic and Biochemical Characterization of the MinC-FtsZ Interaction in Bacillus subtilis. PLoS ONE, 2013, 8, e60690.	2.5	23
16	RefZ Facilitates the Switch from Medial to Polar Division during Spore Formation in Bacillus subtilis. Journal of Bacteriology, 2012, 194, 4608-4618.	2.2	23
17	DivIVA-Mediated Polar Localization of ComN, a Posttranscriptional Regulator of Bacillus subtilis. Journal of Bacteriology, 2012, 194, 3661-3669.	2.2	57
18	Vectorial signalling mechanism required for cell–cell communication during sporulation in <i>Bacillus subtilis</i> . Molecular Microbiology, 2012, 83, 261-274.	2.5	10

#	Article	IF	CITATIONS
19	Structure and Mode of Action of Microplusin, a Copper II-chelating Antimicrobial Peptide from the Cattle Tick Rhipicephalus (Boophilus) microplus. Journal of Biological Chemistry, 2009, 284, 34735-34746.	3.4	83
20	AMIN domains have a predicted role in localization of diverse periplasmic protein complexes. Bioinformatics, 2008, 24, 2423-2426.	4.1	16
21	Cytological Characterization of YpsB, a Novel Component of the <i>Bacillus subtilis </i> Divisome. Journal of Bacteriology, 2008, 190, 7096-7107.	2.2	48
22	GroES/GroEL and DnaK/DnaJ Have Distinct Roles in Stress Responses and during Cell Cycle Progression in Caulobacter crescentus. Journal of Bacteriology, 2006, 188, 8044-8053.	2.2	130
23	Premature targeting of a cell division protein to midcell allows dissection of divisome assembly in Escherichia coli. Genes and Development, 2005, 19, 127-137.	5.9	123
24	Assembly Dynamics of FtsZ Rings in <i>Bacillus subtilis</i> and <i>Escherichia coli</i> and Effects of FtsZ-Regulating Proteins. Journal of Bacteriology, 2004, 186, 5775-5781.	2.2	280
25	A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes and Development, 2002, 16, 2544-2556.	5.9	339
26	Protective Immunity Against the Protozoan <i>Leishmania chagasi </i> Is Induced by Subclinical Cutaneous Infection with Virulent But Not Avirulent Organisms. Journal of Immunology, 2001, 166, 1921-1929.	0.8	60
27	Trans-kingdom Transposition of the <i>Drosophila</i> Element <i>mariner</i> Within the Protozoan <i>Leishmania</i> Science, 1997, 276, 1716-1719.	12.6	160
28	Selection against the Dihydrofolate Reductase-Thymidylate Synthase (<i>DHFR-TS</i>) Locus as a Probe of Genetic Alterations in <i>Leishmania major</i> . Molecular and Cellular Biology, 1996, 16, 5655-5663.	2.3	76
29	Development of a safe live Leishmania vaccine line by gene replacement Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10267-10271.	7.1	205
30	Reactions involving carbamyl phosphate in the presence of precipitated calcium phosphate with formation of pyrophosphate: A model for primitive energy-conservation pathways. Origins of Life and Evolution of Biospheres, 1995, 25, 335-350.	1.9	12
31	Leishmania amazonensis: Multidrug Resistance in Vinblastine-Resistant Promastigotes Is Associated with Rhodamine 123 Efflux, DNA Amplification, and RNA Overexpression of a Leishmania mdr1 Gene. Experimental Parasitology, 1995, 81, 480-490.	1.2	66
32	On the Introduction of Genetically Modified Leishmania outside the Laboratory. Experimental Parasitology, 1994, 78, 425-428.	1.2	14