Li-Wei Mi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2030996/publications.pdf

Version: 2024-02-01

134 papers	7,393 citations	44069 48 h-index	81 g-index
135	135	135	7769
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Accumulation of Sulfonic Acid Groups Anchored in Covalent Organic Frameworks as an Intrinsic Protonâ€Conducting Electrolyte. Macromolecular Rapid Communications, 2022, 43, e2100590.	3.9	17
2	Enhanced interfacial compatibility of FeS@N,S-C anode with ester-based electrolyte enables stable sodium-ion full cells. Journal of Energy Chemistry, 2022, 68, 27-34.	12.9	63
3	Tetrakaidecahedron-shaped Cu four-core supramolecular as novel high-performance electrode material for lithium-ion batteries. Chemical Communications, 2022, , .	4.1	O
4	Metal-Ion Coupling in Metal–Organic Framework Materials Regulating the Output Performance of a Triboelectric Nanogenerator. Inorganic Chemistry, 2022, 61, 2490-2498.	4.0	19
5	Water-Stable Amino-Functionalized Coordination Polymer for Efficient Hg ²⁺ Capture. Crystal Growth and Design, 2022, 22, 1412-1420.	3.0	7
6	Highly Reversible and Stable Zinc Anode Enabled by a Fully Conjugated Porous Organic Polymer Protective Layer. ACS Applied Energy Materials, 2022, 5, 2375-2383.	5.1	16
7	A review of sodium chloride-based electrolytes and materials for electrochemical energy technology. Journal of Materials Chemistry A, 2022, 10, 2637-2671.	10.3	23
8	<i>In situ</i> construction of redox-active covalent organic frameworks/carbon nanotube composites as anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 3989-3995.	10.3	41
9	Defect and interface engineering in metal sulfide catalysts for the electrocatalytic nitrogen reduction reaction: a review. Journal of Materials Chemistry A, 2022, 10, 6927-6949.	10.3	39
10	A novel AIE-active imidazolium macrocyclic ratiometric fluorescence sensor for pyrophosphate anion. RSC Advances, 2022, 12, 6876-6880.	3.6	10
11	Integration of CdS with a Fiber-Based Cadmium Coordination Polymer for Turning On Photocatalytic Oxidative Coupling Reactions. Crystal Growth and Design, 2022, 22, 1792-1800.	3.0	7
12	Fabrication of \hat{l}^2 -Phase-Enriched PVDF Sheets for Self-Powered Piezoelectric Sensing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11854-11863.	8.0	34
13	Design of Photoactive Covalent Organic Frameworks as Heterogeneous Catalyst for Preparation of Thiophosphinates from Phosphine Oxides and Thiols. Chemistry - A European Journal, 2022, , .	3.3	12
14	Enhancement of Output Performance of Triboelectric Nanogenerator by Switchable Stimuli in Metal–Organic Frameworks for Photocatalysis. ACS Applied Materials & Diterfaces, 2022, 14, 16424-16434.	8.0	28
15	Sandwiched film with reversibly switchable transparency through cyclic melting-crystallization. Chemical Engineering Journal, 2022, 442, 136205.	12.7	12
16	In Situ Anchoring Anionâ€Rich and Multiâ€Cavity NiS ₂ Nanoparticles on NCNTs for Advanced Magnesiumâ€Ion Batteries. Advanced Science, 2022, 9, e2200067.	11.2	23
17	Constructing Synergistic Triazine and Acetylene Cores in Fully Conjugated Covalent Organic Frameworks for Cascade Photocatalytic H ₂ O ₂ Production. Chemistry of Materials, 2022, 34, 5232-5240.	6.7	90
18	PAANa-induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance. Science China Materials, 2021, 64, 105-114.	6.3	23

#	Article	IF	CITATIONS
19	Nanotube assembled coral-like ZnS@N, S co-doped carbon: A sodium-ion batteries anode material with outstanding stability and rate performance. Applied Surface Science, 2021, 535, 147748.	6.1	25
20	Singleâ€Atom and Dualâ€Atom Electrocatalysts Derived from Metal Organic Frameworks: Current Progress and Perspectives. ChemSusChem, 2021, 14, 73-93.	6.8	76
21	Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun. Chemical Engineering Journal, 2021, 407, 127960.	12.7	54
22	Influence of Surface Polarity on Catalytic Properties of Aminopyridine Functionalized Polyacrylonitrile Fiber Catalyst. Catalysis Letters, 2021, 151, 2056-2064.	2.6	5
23	Facile Fabrication of Nylon66/Multi-Wall Carbon Nanotubes/Polyvinyl Alcohol Nanofiber Bundles for Use as Humidity Sensors. Journal of Macromolecular Science - Physics, 2021, 60, 368-380.	1.0	1
24	Achieving long-cycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive. Journal of Energy Chemistry, 2021, 57, 650-655.	12.9	37
25	Recent Progress on the Alloyâ€Based Anode for Sodiumâ€Ion Batteries and Potassiumâ€Ion Batteries. Small, 2021, 17, e1903194.	10.0	284
26	Constructing cationic covalent organic frameworks by a post-function process for an exceptional iodine capture <i>via</i> electrostatic interactions. Materials Chemistry Frontiers, 2021, 5, 5463-5470.	5.9	39
27	Keggin-type polyoxometalate-containing metal–organic hybrids as friction materials for triboelectric nanogenerators. CrystEngComm, 2021, 23, 5184-5189.	2.6	10
28	Interface Engineering Based on Multinanoscale Heterojunctions between NiO Quantum Dots, N-Doped Amorphous Carbon and Ni for Advanced Supercapacitor. ACS Applied Energy Materials, 2021, 4, 3221-3230.	5.1	24
29	Simple Preparation of Baroque Mn-Based Chalcogenide/Honeycomb-like Carbon Composites for Sodium-lon Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Description of Baroque Mn-Based Chalcogenide/Honeycomb-like Carbon Composites for Sodium-lon Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Description Composites for Sodium-lon Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Description Composites for Sodium-lon Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Description Composites for Sodium-lon Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Description Composites for Sodium-lon Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Description Composites for Sodium-lon Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Description Composites for Sodium-lon Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Description Composites for Sodium-lon Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Description Composites for Sodium-lon Batteries from Renewable <i>Pleurotus Eryngii</i> . Energy & Description Composites from Renewable <i>Pleurotus Eryngii</i> . Energy & Description Composites from Renewable <i>Pleurotus Eryngii</i> . Energy & Description Composites from Renewable <i> Pleurotus Eryngii</i> . Energy & Description Composites from Renewable <i> Pleurotus Eryngii</i> . Pleurotus Eryngii. Pleurotus Eryngii<	5.1	4
30	Microribbon Structured Polyvinylidene Fluoride with High-Performance Piezoelectricity for Sensing Application. ACS Applied Polymer Materials, 2021, 3, 2411-2419.	4.4	15
31	Continuous fabrication of polyethylene microfibrilar bundles for wearable personal thermal management fabric. Applied Surface Science, 2021, 549, 149255.	6.1	28
32	Simultaneous Enhancement of Toughness and Strength of Stretched iPP Film via Tiny Amount of β-Nucleating Agent under "Shear-free―Melt-extrusion. Chinese Journal of Polymer Science (English) Tj ETQq	վ0 0.0 rgB⁻	Γ/ Ø verlock 1(
33	Tunable and Nacreâ€Mimetic Multifunctional Electronic Skins for Highly Stretchable Contactâ€Noncontact Sensing. Small, 2021, 17, e2100542.	10.0	69
34	Simple Approach to Fabricate an Anisotropic Wetting Surface with High Adhesive Force toward Droplet Transfer. ACS Applied Polymer Materials, 2021, 3, 4470-4477.	4.4	1
35	Fabrication of single phase CsPbBr ₃ films <i>via in situ</i> metal reaction. CrystEngComm, 2021, 23, 2938-2944.	2.6	2
36	Programmable Triboelectric Nanogenerators Dependent on the Secondary Building Units in Cadmium Coordination Polymers. Inorganic Chemistry, 2021, 60, 550-554.	4.0	21

#	Article	IF	Citations
37	Flexible thiourea linked covalent organic frameworks. CrystEngComm, 2021, 23, 7576-7580.	2.6	6
38	High-rate performance aqueous-based supercapacitors at â^30 °C driven by novel 1D Ni(OH) ₂ nanorods and a two-solute electrolyte. Journal of Materials Chemistry A, 2021, 9, 23860-23872.	10.3	21
39	Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator. Advanced Composites and Hybrid Materials, 2021, 4, 1215-1225.	21.1	99
40	Homogeneous and Fast Li-Ion Transport Enabled by a Novel Metal–Organic-Framework-Based Succinonitrile Electrolyte for Dendrite-Free Li Deposition. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52688-52696.	8.0	22
41	Visible-light-driven H ₂ production from heterostructured Zn _{0.5} Cd _{0.5} S–TiO ₂ photocatalysts modified with reduced graphene oxides. New Journal of Chemistry, 2021, 45, 21415-21422.	2.8	0
42	A facile method to enhance the output performance of triboelectric nanogenerators based on coordination polymers by modulating terminal coordination groups. CrystEngComm, 2021, 24, 192-198.	2.6	7
43	Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries. Journal of Energy Chemistry, 2020, 46, 71-77.	12.9	75
44	Organosulfonate Counteranions—A Trapped Coordination Polymer as a Highâ€Output Triboelectric Nanogenerator Material for Selfâ€Powered Anticorrosion. Chemistry - A European Journal, 2020, 26, 584-591.	3.3	51
45	Bimetal Synergistic Effect Induced High Reversibility of Conversion-Type $Ni@NiCo2S4 as a Free-Standing Anode for Sodium Ion Batteries. Journal of Physical Chemistry Letters, 2020, 11, 1435-1442.$	4.6	54
46	Enhanced piezoresistive performance of conductive WPU/CNT composite foam through incorporating brittle cellulose nanocrystal. Chemical Engineering Journal, 2020, 387, 124045.	12.7	118
47	Oriented assembly of copper metal–organic framework membranes as tandem catalysts to enhance C–H hydroxyalkynylation reactions with regiocontrol. CrystEngComm, 2020, 22, 802-810.	2.6	7
48	The design of CNTs@Ni _{1/3} Co _{2/3} (CO ₃) _{1/2} (OH)·0.11H ₂ Oion situCO+18-118-1189.	2.8	4
49	Transparent Conductive Flexible Trilayer Films for a Deicing Window and Self-Recover Bending Sensor Based on a Single-Walled Carbon Nanotube/Polyvinyl Butyral Interlayer. ACS Applied Materials & Deicy Interfaces, 2020, 12, 1454-1464.	8.0	27
50	High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries. Green Energy and Environment, 2020, 5, 50-58.	8.7	55
51	Large-area fabrication and applications of patterned surface with anisotropic superhydrophobicity. Applied Surface Science, 2020, 529, 147027.	6.1	25
52	Cationic Covalent Organic Frameworks for Fabricating an Efficient Triboelectric Nanogenerator. , 2020, 2, 1691-1697.		42
53	Metal–organic frameworks as acid- and/or base-functionalized catalysts for tandem reactions. Dalton Transactions, 2020, 49, 14723-14730.	3.3	31
54	Conjugated Covalent Organic Frameworks as Platinum Nanoparticle Supports for Catalyzing the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 9747-9752.	6.7	68

#	Article	IF	Citations
55	Ultrathin 2D FexCo1-xSe2 nanosheets with enhanced sodium-ion storage performance induced by heteroatom doping effect. Electrochimica Acta, 2020, 353, 136563.	5.2	11
56	Cream roll-inspired advanced MnS/C composite for sodium-ion batteries: encapsulating MnS cream into hollow N,S-co-doped carbon rolls. Nanoscale, 2020, 12, 8493-8501.	5.6	41
57	A novel strategy to synthesize NiCo layered double hydroxide nanotube from metal organic framework composite for high-performance supercapacitor. Journal of Alloys and Compounds, 2020, 831, 154794.	5.5	39
58	Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Metals, 2020, 39, 1053-1062.	7.1	70
59	Effect of small amount of multi-walled carbon nanotubes on crystallization and thermal-mechanical properties of overflow microinjection molded isotactic polypropylene. Composites Communications, 2020, 21, 100381.	6.3	13
60	Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels <i>via</i> tuning the carbonization temperature. Journal of Materials Chemistry C, 2020, 8, 5191-5201.	5.5	51
61	Bromineâ€Functionalized Covalent Organic Frameworks for Efficient Triboelectric Nanogenerator. Chemistry - A European Journal, 2020, 26, 5784-5788.	3.3	40
62	Frontispiece: Organosulfonate Counteranions—A Trapped Coordination Polymer as a Highâ€Output Triboelectric Nanogenerator Material for Selfâ€Powered Anticorrosion. Chemistry - A European Journal, 2020, 26, .	3.3	0
63	Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Composites Science and Technology, 2020, 189, 108038.	7.8	81
64	Se–C bond and reversible SEI in facile synthesized SnSe2âŠ,3D carbon induced stable anode for sodium-ion batteries. Electrochimica Acta, 2020, 337, 135783.	5.2	37
65	Cotton Clothâ€Induced Flexible Hierarchical Carbon Film for Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 2136-2144.	3.4	11
66	Nanosheet-assembled microflower-like coordination polymers by surfactant-assisted assembly with enhanced catalytic activity. CrystEngComm, 2020, 22, 7858-7863.	2.6	3
67	Hydrangea-like α-Ni _{1/3} Co _{2/3} (OH) ₂ Reinforced by Ethyl Carbamate "Rivet―for All-Solid-State Supercapacitors with Outstanding Comprehensive Performance. ACS Applied Materials & Diterfaces, 2019, 11, 32269-32281.	8.0	63
68	Designed synthesis of porous NiMoO ₄ /C composite nanorods for asymmetric supercapacitors. CrystEngComm, 2019, 21, 5492-5499.	2.6	12
69	Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19709-19718.	10.3	86
70	Oneâ€Step Transformation from Cu 2 S Nanocrystal to CuS Nanocrystal with Photocatalytic Properties. ChemistrySelect, 2019, 4, 7512-7522.	1.5	7
71	Highly Compressible and Robust Polyimide/Carbon Nanotube Composite Aerogel for High-Performance Wearable Pressure Sensor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42594-42606.	8.0	255
72	Heterojunction \hat{l}_{\pm} -Co(OH)2/ \hat{l}_{\pm} -Ni(OH)2 nanorods arrays on Ni foam with high utilization rate and excellent structure stability for high-performance supercapacitor. Scientific Reports, 2019, 9, 12727.	3.3	23

#	Article	IF	CITATIONS
73	Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy, 2019, 65, 104068.	16.0	89
74	Directed Structural Transformations of Coordination Polymers Supported Single-Site Cu(II) Catalysts To Control the Site Selectivity of C–H Halogenation. Inorganic Chemistry, 2019, 58, 12933-12942.	4.0	18
75	Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano Energy, 2019, 66, 104143.	16.0	249
76	Bio-inspired nano-engineering of an ultrahigh loading 3D hierarchical Ni@NiCo ₂ S ₄ /Ni ₃ S ₂ electrode for high energy density supercapacitors. Nanoscale, 2019, 11, 1728-1736.	5.6	72
77	Significant Stretchability Enhancement of a Crack-Based Strain Sensor Combined with High Sensitivity and Superior Durability for Motion Monitoring. ACS Applied Materials & Samp; Interfaces, 2019, 11, 7405-7414.	8.0	243
78	Bi-component synergic effect in lily-like CdS/Cu ₇ S ₄ QDs for dye degradation. RSC Advances, 2019, 9, 2441-2450.	3.6	12
79	Superhydrophobic Electrically Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property. ACS Applied Materials & Interfaces, 2019, 11, 21904-21914.	8.0	228
80	Anisotropic Conductive Polymer Composites Based on High Density Polyethylene/Carbon Nanotube/Polyoxyethylene Mixtures for Microcircuits Interconnection and Organic Vapor Sensor. ACS Applied Nano Materials, 2019, 2, 3636-3647.	5.0	30
81	Reversible Structural Transformations of Metal–Organic Frameworks as Artificial Switchable Catalysts for Dynamic Control of Selectively Cyanation Reaction. Chemistry - A European Journal, 2019, 25, 10366-10374.	3.3	25
82	\hat{l}_{\pm} -Ni(OH) ₂ /NiS _{1.97} heterojunction composites with excellent ion and electron transport properties for advanced supercapacitors. Nanoscale, 2019, 11, 6243-6253.	5.6	106
83	Construction of Highâ€Nuclear Cu x S y Nanocrystalline Catalyst from Highâ€Nuclear Copper Cluster. ChemistrySelect, 2019, 4, 3459-3464.	1.5	0
84	Crystalline structure and remarkably enhanced tensile property of \hat{l}^2 -isotactic polypropylene via overflow microinjection molding. Polymer Testing, 2019, 76, 448-454.	4.8	13
85	Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with a Cracked Cellulose Nanofibril/Silver Nanowire Layer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10922-10932.	8.0	331
86	Synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylonitrile separator for lithium/sodium-ion batteries. Journal of Membrane Science, 2019, 577, 137-144.	8.2	55
87	Surfactant-assisted assembly of nanoscale zinc coordination compounds to enhance tandem conversion reactions in water. Dalton Transactions, 2019, 48, 16008-16016.	3.3	6
88	Highâ€Performance Flexible Freestanding Anode with Hierarchical 3D Carbonâ€Networks/Fe ₇ S ₈ /Graphene for Applicable Sodiumâ€lon Batteries. Advanced Materials, 2019, 31, e1806664.	21.0	233
89	Understanding Shuttling Effect in Sodium Ion Batteries for the Solution of Capacity Fading: FeS ₂ as an Example. Journal of Physical Chemistry C, 2019, 123, 2775-2782.	3.1	54
90	Nitrogen-doped hierarchical porous carbon derived from a chitosan/polyethylene glycol blend for high performance supercapacitors. RSC Advances, 2018, 8, 7072-7079.	3.6	20

#	Article	IF	Citations
91	Carbon coated ultrasmall anatase TiO 2 nanocrystal anchored on N,S-RGO as high-performance anode for sodium ion batteries. Green Energy and Environment, 2018, 3, 277-285.	8.7	23
92	Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. Journal of Power Sources, 2018, 376, 177-183.	7.8	86
93	<i>In situ</i> sulfuration synthesis of flexible PAN-CuS "flowering branch―heterostructures as recyclable catalysts for dye degradation. RSC Advances, 2018, 8, 40589-40594.	3.6	5
94	Development of high-utilization honeycomb-like \hat{l} ±-Ni(OH) ₂ for asymmetric supercapacitors with excellent capacitance. RSC Advances, 2018, 8, 37129-37135.	3.6	16
95	Ultrastretchable Multilayered Fiber with a Hollow-Monolith Structure for High-Performance Strain Sensor. ACS Applied Materials & Sensor. ACS ACS Applied Materials & Sensor. ACS	8.0	81
96	The effect of double grafted interface layer on the properties of carbon fiber reinforced polyamide 66 composites. Composites Science and Technology, 2018, 168, 20-27.	7.8	58
97	Oriented Controllable Fabrication of Metal–Organic Frameworks Membranes as Solid Catalysts for Cascade Indole Acylation–Nazarov Cyclization for Cyclopentenone[<i>b</i>]indoles. Crystal Growth and Design, 2018, 18, 5674-5681.	3.0	14
98	Electrospun Flexible Cellulose Acetate-Based Separators for Sodium-Ion Batteries with Ultralong Cycle Stability and Excellent Wettability: The Role of Interface Chemical Groups. ACS Applied Materials & Acceptable 4.0, 23883-23890.	8.0	84
99	Synergistic Effect Initiating Ni1-xCoxMoO4â^™xH2O as Electrodes for High-Energy-Density Asymmetric Supercapacitors. Electrochimica Acta, 2017, 228, 274-281.	5.2	17
100	Design of FeS2@rGO composite with enhanced rate and cyclic performances for sodium ion batteries. Electrochimica Acta, 2017, 230, 1-9.	5.2	77
101	High-rate-capability asymmetric supercapacitor device based on lily-like Co ₃ O ₄ nanostructures assembled using nanowires. RSC Advances, 2017, 7, 3752-3759.	3.6	22
102	Sequential partial ion exchange synthesis of composite Ni ₃ S ₂ /Co ₉ S ₈ /NiSe nanoarrays with a lavender-like hierarchical morphology. Inorganic Chemistry Frontiers, 2017, 4, 727-735.	6.0	40
103	Pyrite FeS ₂ microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5332-5341.	10.3	123
104	Synergistic effect induced ultrafine SnO ₂ /graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. Journal of Materials Chemistry A, 2017, 5, 10027-10038.	10.3	155
105	Construction of hierarchical three-dimensional interspersed flower-like nickel hydroxide for asymmetric supercapacitors. Nano Research, 2017, 10, 3726-3742.	10.4	85
106	Solvent-Induced Assembly of Sliver Coordination Polymers (CPs) as Cooperative Catalysts for Synthesizing of Cyclopentenone[b]pyrroles Frameworks. Inorganic Chemistry, 2017, 56, 4874-4884.	4.0	31
107	Urchin-Like Ni _{1/3} Co _{2/3} (CO ₃) _{1/2} (OH)·0.11H ₂ O for Ultrahigh-Rate Electrochemical Supercapacitors: Structural Evolution from Solid to Hollow. ACS Applied Materials & Samp: Interfaces. 2017. 9. 40655-40670.	8.0	84
108	From \hat{l}_{\pm} -NaMnO $<$ sub $>$ 2 $<$ /sub $>$ to crystal water containing Na-birnessite: enhanced cycling stability for sodium-ion batteries. CrystEngComm, 2016, 18, 3136-3141.	2.6	46

#	Article	IF	Citations
109	Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Advances, 2016, 6, 46523-46530.	3.6	111
110	Hierarchical ternary Ni–Co–Se nanowires for high-performance supercapacitor device design. Dalton Transactions, 2016, 45, 19458-19465.	3.3	112
111	Consecutive Reaction to Construct Hierarchical Nanocrystalline CuS "Branch―with Tunable Catalysis Properties. Scientific Reports, 2016, 6, 30604.	3.3	11
112	Double Metal Ions Synergistic Effect in Hierarchical Multiple Sulfide Microflowers for Enhanced Supercapacitor Performance. ACS Applied Materials & Interfaces, 2015, 7, 4311-4319.	8.0	202
113	Carambola-like Ni@Ni _{1.5} Co _{1.5} S ₂ for Use in High-Performance Supercapacitor Devices Design. ACS Sustainable Chemistry and Engineering, 2015, 3, 2777-2785.	6.7	86
114	A nest-like Ni@Ni _{1.4} Co _{1.6} S ₂ electrode for flexible high-performance rolling supercapacitor device design. Journal of Materials Chemistry A, 2015, 3, 20973-20982.	10.3	105
115	Aluminum Insertionâ€Induced Enhanced Performance of Li(Ni _{0.83â€<i>x</i>} Co _{0.10} Mn _{0.07} Al _{<i>y</i>})O ₂ Microspheres for Lithiumâ€Ion Batteries Design. ChemElectroChem, 2014, 1, 601-610.	>3 . 4	19
116	Oneâ€pot fabrication of largeâ€scale ordered NiTe nanosheets and its application in lithiumâ€ion batteries. Crystal Research and Technology, 2014, 49, 414-417.	1.3	5
117	Ag ⁺ insertion into 3D hierarchical rose-like Cu _{1.8} Se nanocrystals with tunable band gap and morphology genetic. Nanoscale, 2014, 6, 1124-1133.	5.6	28
118	Beneficial metal ion insertion into dandelion-like MnS with enhanced catalytic performance and genetic morphology. RSC Advances, 2014, 4, 19257-19265.	3.6	22
119	Partial Ion-Exchange of Nickel-Sulfide-Derived Electrodes for High Performance Supercapacitors. Chemistry of Materials, 2014, 26, 3418-3426.	6.7	311
120	One-pot synthesis and the electrochemical properties of nano-structured nickel selenide materials with hierarchical structure. CrystEngComm, 2013, 15, 2624.	2.6	24
121	Synthesis of Li2FeSiO4/C and its excellent performance in aqueous lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10912.	10.3	17
122	3D porous nano/micro nickel sulfides with hierarchical structure: controlled synthesis, structure characterization and electrochemical properties. Dalton Transactions, 2013, 42, 5724.	3.3	60
123	Synthesis, characterization and electrochemical performance of Li2FeSiO4/C for lithium-ion batteries. RSC Advances, 2013, 3, 408-412.	3.6	27
124	Tunable properties induced by ion exchange in multilayer intertwined CuS microflowers with hierarchal structures. Nanoscale, 2013, 5, 6589.	5.6	68
125	Large-scale urchin-like micro/nano-structured NiS: controlled synthesis, cation exchange and lithium-ion battery applications. RSC Advances, 2013, 3, 17431.	3.6	41
126	Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization. CrystEngComm, 2012, 14, 3965.	2.6	77

#	Article	lF	CITATIONS
127	Large-scale stereoscopic structured heazlewoodite microrod arrays and scale-like microsheets for lithium-ion battery applications. RSC Advances, 2012, 2, 6817.	3.6	29
128	Understanding the formation of CuS concave superstructures with peroxidase-like activity. Nanoscale, 2012, 4, 3501.	5.6	210
129	Syntheses and Fluorescence Properties of New Coordination Polymers Containing 4, 4′â€Dinitrostilbeneâ€2, 2′â€Disulfonate Building Unit Supported by Rigid Auxiliary Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1219-1223.	1.2	O
130	Enforced 2D supramolecular structures within hydrogen-bonded molecular cocrystals. Journal of Coordination Chemistry, 2009, 62, 1964-1971.	2.2	10
131	Polymeric Zinc Ferrocenyl Sulfonate as a Molecular Aspirator for the Removal of Toxic Metal Ions. Chemistry - A European Journal, 2008, 14, 1814-1821.	3.3	108
132	Rational Construction of Porous Polymeric Cadmium Ferrocene-1, $1\hat{a}\in^2$ -disulfonates for Transition Metal Ion Exchange and Sorption. Crystal Growth and Design, 2007, 7, 2553-2561.	3.0	109
133	Inclusion Complexes for Use in Roomâ€Temperature Gasâ€6ensor Design. European Journal of Inorganic Chemistry, 2007, 2007, 5226-5233.	2.0	5
134	Phenolic Hydroxylâ€Functionalized Covalent–Organic Frameworks for Formal [3+2] Reaction. Macromolecular Chemistry and Physics, 0, , 2100462.	2.2	0