
## Eduardo Gracia-Espino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2030720/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Controlling the Emission Zone by Additives for Improved Lightâ€Emitting Electrochemical Cells.<br>Advanced Materials, 2022, 34, e2107849.                                                                                                                                                              | 21.0 | 26        |
| 2  | Carbon nanodots: A metal-free, easy-to-synthesize, and benign emitter for light-emitting electrochemical cells. Nano Research, 2022, 15, 5610-5618.                                                                                                                                                    | 10.4 | 14        |
| 3  | Elucidating Deviating Temperature Behavior of Organic Lightâ€Emitting Diodes and Lightâ€Emitting<br>Electrochemical Cells. Advanced Optical Materials, 2021, 9, 2001405.                                                                                                                               | 7.3  | 15        |
| 4  | Highly Soluble CsPbBr <sub>3</sub> Perovskite Quantum Dots for Solution-Processed Light-Emission<br>Devices. ACS Applied Nano Materials, 2021, 4, 1162-1174.                                                                                                                                           | 5.0  | 16        |
| 5  | Nanoparticulate Double-Heterojunction Photocatalysts Comprising<br>TiO <sub>2(Anatase)</sub> /WO <sub>3</sub> /TiO <sub>2(Rutile)</sub> with Enhanced Photocatalytic<br>Activity toward the Degradation of Methyl Orange under Near-Ultraviolet and Visible Light. ACS<br>Omega. 2021, 6, 11840-11848. | 3.5  | 25        |
| 6  | β-Mo <sub>2</sub> C Nanoparticles Produced by Carburization of Molybdenum Oxides with Carbon<br>Black under Microwave Irradiation for Electrocatalytic Hydrogen Evolution Reaction. ACS Applied<br>Nano Materials, 2021, 4, 12270-12277.                                                               | 5.0  | 15        |
| 7  | Magnetically Collected Platinum/Nickel Alloy Nanoparticles as Catalysts for Hydrogen Evolution. ACS<br>Applied Nano Materials, 2021, 4, 12957-12965.                                                                                                                                                   | 5.0  | 9         |
| 8  | Oxygen Reduction Reactions on Single―or Fewâ€Atom Discrete Active Sites for Heterogeneous Catalysis.<br>Advanced Energy Materials, 2020, 10, 1902084.                                                                                                                                                  | 19.5 | 82        |
| 9  | Microwave-Induced Structural Ordering of Resilient Nanostructured L1 <sub>0</sub> -FePt Catalysts for Oxygen Reduction Reaction. ACS Applied Energy Materials, 2020, 3, 9785-9791.                                                                                                                     | 5.1  | 4         |
| 10 | Hydrogen Evolution Reaction Activity of Heterogeneous Materials: A Theoretical Model. Journal of<br>Physical Chemistry C, 2020, 124, 20911-20921.                                                                                                                                                      | 3.1  | 48        |
| 11 | Solid-state synthesis of few-layer cobalt-doped MoS <sub>2</sub> with CoMoS phase on nitrogen-doped graphene driven by microwave irradiation for hydrogen electrocatalysis. RSC Advances, 2020, 10, 34323-34332.                                                                                       | 3.6  | 14        |
| 12 | Tunable Two-Dimensional Patterning of a Semiconducting and Nanometer-Thin C60 Fullerene Film<br>Using a Spatial Light Modulator. ACS Applied Nano Materials, 2020, 3, 5463-5472.                                                                                                                       | 5.0  | 4         |
| 13 | Fe-substituted cobalt-phosphate polyoxometalates as enhanced oxygen evolution catalysts in acidic media. Chinese Journal of Catalysis, 2020, 41, 853-857.                                                                                                                                              | 14.0 | 29        |
| 14 | Theoretical Analysis of Surface Active Sites in Defective 2H and 1T′ MoS <sub>2</sub> Polymorphs for Hydrogen Evolution Reaction: Quantifying the Total Activity of Point Defects. Advanced Theory and Simulations, 2020, 3, 1900213.                                                                  | 2.8  | 17        |
| 15 | Oxidatively induced exposure of active surface area during microwave assisted formation of<br>Pt <sub>3</sub> Co nanoparticles for oxygen reduction reaction. RSC Advances, 2019, 9, 17979-17987.                                                                                                      | 3.6  | 4         |
| 16 | Ultrasmall Abundant Metal-Based Clusters as Oxygen-Evolving Catalysts. Journal of the American<br>Chemical Society, 2019, 141, 232-239.                                                                                                                                                                | 13.7 | 56        |
| 17 | Influence of Sb <sup>5+</sup> as a Double Donor on Hematite (Fe <sup>3+</sup> ) Photoanodes for<br>Surface-Enhanced Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces,<br>2018, 10, 16467-16473.                                                                                | 8.0  | 50        |
| 18 | Yttria stabilized and surface activated platinum (PtxYOy) nanoparticles through rapid microwave assisted synthesis for oxygen reduction reaction. Nano Energy, 2018, 46, 141-149.                                                                                                                      | 16.0 | 21        |

Eduardo Gracia-Espino

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Effect of tetravalent dopants on hematite nanostructure for enhanced photoelectrochemical water splitting. Applied Surface Science, 2018, 427, 1203-1212.                                                                                 | 6.1  | 51        |
| 20 | Stable Sulfurâ€Intercalated 1T′ MoS <sub>2</sub> on Graphitic Nanoribbons as Hydrogen Evolution<br>Electrocatalyst. Advanced Functional Materials, 2018, 28, 1802744.                                                                     | 14.9 | 79        |
| 21 | Coronene-Based Graphene Nanoribbons Insulated by Boron Nitride Nanotubes: Electronic Properties of the Hybrid Structure. ACS Omega, 2018, 3, 12930-12935.                                                                                 | 3.5  | 3         |
| 22 | Surface activation of graphene nanoribbons for oxygen reduction reaction by nitrogen doping and defect engineering: An ab initio study. Carbon, 2018, 137, 349-357.                                                                       | 10.3 | 16        |
| 23 | Spontaneous twisting of a collapsed carbon nanotube. Nano Research, 2017, 10, 1942-1949.                                                                                                                                                  | 10.4 | 12        |
| 24 | Microwave-assisted synthesis of multimetal oxygen-evolving catalysts. Electrochemistry Communications, 2017, 81, 116-119.                                                                                                                 | 4.7  | 15        |
| 25 | Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy, 2017, 35, 9-16.                                                                                     | 16.0 | 289       |
| 26 | Cationic Vacancy Defects in Iron Phosphide: A Promising Route toward Efficient and Stable Hydrogen<br>Evolution by Electrochemical Water Splitting. ChemSusChem, 2017, 10, 4544-4551.                                                     | 6.8  | 63        |
| 27 | Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie, 2017, 129, 13988-13992.                                                                   | 2.0  | 88        |
| 28 | Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction<br>Reaction in Acidic Media. Angewandte Chemie - International Edition, 2017, 56, 13800-13804.                                         | 13.8 | 409       |
| 29 | Temperature Dependence of Sensors Based on Silver-Decorated Nitrogen-Doped Multiwalled Carbon<br>Nanotubes. Journal of Sensors, 2016, 2016, 1-10.                                                                                         | 1.1  | 9         |
| 30 | Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Research, 2016, 9, 1956-1968.                                                                                           | 10.4 | 62        |
| 31 | Electrostatically Driven Nanoballoon Actuator. Nano Letters, 2016, 16, 6787-6791.                                                                                                                                                         | 9.1  | 16        |
| 32 | Behind the Synergistic Effect Observed on Phosphorus–Nitrogen Codoped Graphene during the<br>Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2016, 120, 27849-27857.                                                          | 3.1  | 45        |
| 33 | Stabilizing Active Edge Sites in Semicrystalline Molybdenum Sulfide by Anchorage on Nitrogenâ€Đoped<br>Carbon Nanotubes for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26,<br>6766-6776.                           | 14.9 | 110       |
| 34 | Toward a Low ost Artificial Leaf: Driving Carbonâ€Based and Bifunctional Catalyst Electrodes with<br>Solutionâ€Processed Perovskite Photovoltaics. Advanced Energy Materials, 2016, 6, 1600738.                                           | 19.5 | 28        |
| 35 | Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water<br>Oxidation: Effect of Be2+ as co-dopant. Scientific Reports, 2016, 6, 23183.                                                                   | 3.3  | 75        |
| 36 | Photovoltaics: Toward a Lowâ€Cost Artificial Leaf: Driving Carbonâ€Based and Bifunctional Catalyst<br>Electrodes with Solutionâ€Processed Perovskite Photovoltaics (Adv. Energy Mater. 20/2016). Advanced<br>Energy Materials, 2016, 6, . | 19.5 | 0         |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Electron transport study on functionalized armchair graphene nanoribbons: DFT calculations. RSC<br>Advances, 2016, 6, 21954-21960.                                                                                             | 3.6  | 24        |
| 38 | Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of<br>cuboctahedral Pt <sub>3</sub> Co–Pt core–shell nanoparticles. Catalysis Science and Technology,<br>2016, 6, 1393-1401.          | 4.1  | 17        |
| 39 | Calorimetric measurements on Li4C60and Na4C60. Journal of Chemical Physics, 2015, 142, 164706.                                                                                                                                 | 3.0  | 1         |
| 40 | Comprehensive Study of an Earth-Abundant Bifunctional 3D Electrode for Efficient Water<br>Electrolysis in Alkaline Medium. ACS Applied Materials & Interfaces, 2015, 7, 28148-28155.                                           | 8.0  | 36        |
| 41 | Hierarchical self-assembled structures based on nitrogen-doped carbon nanotubes as advanced<br>negative electrodes for Li-ion batteries and 3D microbatteries. Journal of Power Sources, 2015, 279,<br>581-592.                | 7.8  | 41        |
| 42 | Self-Assembly Synthesis of Decorated Nitrogen-Doped Carbon Nanotubes with ZnO Nanoparticles:<br>Anchoring Mechanism and the Effects of Sulfur. Journal of Physical Chemistry C, 2015, 119, 741-747.                            | 3.1  | 9         |
| 43 | C <sub>60</sub> /Collapsed Carbon Nanotube Hybrids: A Variant of Peapods. Nano Letters, 2015, 15, 829-834.                                                                                                                     | 9.1  | 26        |
| 44 | Biotin molecules on nitrogen-doped carbon nanotubes enhance the uniform anchoring and formation of Ag nanoparticles. Carbon, 2015, 88, 51-59.                                                                                  | 10.3 | 10        |
| 45 | Fabrication of One-Dimensional Zigzag [6,6]-Phenyl-C <sub>61</sub> -Butyric Acid Methyl Ester<br>Nanoribbons from Two-Dimensional Nanosheets. ACS Nano, 2015, 9, 10516-10522.                                                  | 14.6 | 10        |
| 46 | Improved Oxygen Reduction Performance of Pt–Ni Nanoparticles by Adhesion on Nitrogen-Doped<br>Graphene. Journal of Physical Chemistry C, 2014, 118, 2804-2811.                                                                 | 3.1  | 65        |
| 47 | Reduction free room temperature synthesis of a durable and efficient Pd/ordered mesoporous carbon composite electrocatalyst for alkaline direct alcohols fuel cell. RSC Advances, 2014, 4, 676-682.                            | 3.6  | 37        |
| 48 | Small palladium islands embedded in palladium–tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction. Nature Communications, 2014, 5, 5253.                                                            | 12.8 | 77        |
| 49 | Understanding the Interface of Six-Shell Cuboctahedral and Icosahedral Palladium Clusters on<br>Reduced Graphene Oxide: Experimental and Theoretical Study. Journal of the American Chemical<br>Society, 2014, 136, 6626-6633. | 13.7 | 55        |
| 50 | Nitrogenâ€Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. Advanced<br>Functional Materials, 2013, 23, 3755-3762.                                                                                      | 14.9 | 31        |
| 51 | Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic Î <sup>3</sup> -Fe2O3 nanoparticles.<br>Nature Communications, 2013, 4, 2319.                                                                       | 12.8 | 135       |
| 52 | Novel Carbon-Based Nanomaterials. , 2013, , 61-87.                                                                                                                                                                             |      | 5         |
| 53 | Nitrogen Doping Mechanism in Small Diameter Single-Walled Carbon Nanotubes: Impact on Electronic<br>Properties and Growth Selectivity. Journal of Physical Chemistry C, 2013, 117, 25805-25816.                                | 3.1  | 44        |
|    |                                                                                                                                                                                                                                |      |           |

EDUARDO GRACIA-ESPINO

| #  | Article                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Hydroxyl-Functionalized and N-Doped Multiwalled Carbon Nanotubes Decorated with Silver<br>Nanoparticles Preserve Cellular Function. ACS Nano, 2011, 5, 2458-2466. | 14.6 | 71        |
| 56 | Doping (10, 0)-Semiconductor Nanotubes with Nitrogen and Vacancy Defects. Materials Express, 2011, 1, 127-135.                                                    | 0.5  | 22        |
| 57 | Electrical Transport and Field-Effect Transistors Using Inkjet-Printed SWCNT Films Having Different<br>Functional Side Groups. ACS Nano, 2010, 4, 3318-3324.      | 14.6 | 79        |
| 58 | Electrical transport through single-wall carbon nanotube–anodic aluminum oxide–aluminum<br>heterostructures. Nanotechnology, 2010, 21, 035707.                    | 2.6  | 6         |
| 59 | Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating. Journal of<br>Vacuum Science & Technology B, 2009, 27, 1996.                 | 1.3  | 26        |
| 60 | Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings.<br>Toxicology Letters, 2009, 191, 305-313.                     | 0.8  | 109       |
| 61 | Self-diffraction properties in nanotubes (CNTs). Proceedings of SPIE, 2009, , .                                                                                   | 0.8  | 3         |