
Xiu-Mei Mo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2030510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of Chitosan/Silk Fibroin Composite Nanofibers for Wound-dressing Applications. International Journal of Molecular Sciences, 2010, 11, 3529-3539.	4.1	291
2	Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 24415-24425.	8.0	246
3	3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomaterialia, 2017, 50, 154-164.	8.3	201
4	BMP-2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2015, 7, 15777-15789.	8.0	191
5	Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2010, 79, 315-325.	5.0	179
6	In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomaterialia, 2019, 84, 98-113.	8.3	174
7	Aligned natural–synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomaterialia, 2011, 7, 634-643.	8.3	164
8	Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release. Pharmaceutics, 2019, 11, 182.	4.5	151
9	Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids and Surfaces B: Biointerfaces, 2016, 143, 415-422.	5.0	149
10	Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. Journal of Materials Science and Technology, 2020, 59, 243-261.	10.7	135
11	A Single Integrated 3Dâ€Printing Process Customizes Elastic and Sustainable Triboelectric Nanogenerators for Wearable Electronics. Advanced Functional Materials, 2018, 28, 1805108.	14.9	126
12	Engineering PCL/lignin nanofibers as an antioxidant scaffold for the growth of neuron and Schwann cell. Colloids and Surfaces B: Biointerfaces, 2018, 169, 356-365.	5.0	121
13	3D printing electrospinning fiber-reinforced decellularized extracellular matrix for cartilage regeneration. Chemical Engineering Journal, 2020, 382, 122986.	12.7	121
14	Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioactive Materials, 2020, 5, 963-979.	15.6	121
15	Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. International Journal of Biological Macromolecules, 2013, 56, 49-56.	7.5	117
16	Moist-Retaining, Self-Recoverable, Bioadhesive, and Transparent in Situ Forming Hydrogels To Accelerate Wound Healing. ACS Applied Materials & Interfaces, 2020, 12, 2023-2038.	8.0	110
17	Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(<scp>l</scp> -Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 4137-4148.	8.0	109
18	Fabrication of Electrospun Poly(L-Lactide-co-É›-Caprolactone)/Collagen Nanoyarn Network as a Novel, Three-Dimensional, Macroporous, Aligned Scaffold for Tendon Tissue Engineering. Tissue Engineering - Part C: Methods, 2013, 19, 925-936.	2.1	106

#	Article	IF	CITATIONS
19	Electrospinning collagen/chitosan/poly(<scp>L</scp> â€lactic acidâ€ <i>co</i> â€lµâ€caprolactone) to form a vascular graft: Mechanical and biological characterization. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1292-1301.	4.0	106
20	Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. Journal of Colloid and Interface Science, 2019, 534, 625-636.	9.4	106
21	Soft tissue adhesive composed of modified gelatin and polysaccharides. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 341-351.	3.5	98
22	Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology. Colloids and Surfaces B: Biointerfaces, 2014, 113, 101-106.	5.0	98
23	Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2016, 142, 165-172.	5.0	98
24	The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering. Biomaterials, 2014, 35, 2760-2772.	11.4	97
25	A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomaterialia, 2020, 108, 207-222.	8.3	96
26	Polypyrrole-coated poly(<scp>l</scp> -lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation. Journal of Materials Chemistry B, 2016, 4, 6670-6679.	5.8	94
27	An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration. Biomaterials, 2017, 136, 12-28.	11.4	93
28	In situ forming hydrogel of natural polysaccharides through Schiff base reaction for soft tissue adhesive and hemostasis. International Journal of Biological Macromolecules, 2020, 147, 653-666.	7.5	93
29	A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering. Colloids and Surfaces B: Biointerfaces, 2014, 122, 270-276.	5.0	92
30	Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin. International Journal of Biological Macromolecules, 2017, 96, 569-577.	7.5	91
31	Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration. Materials and Design, 2019, 179, 107886.	7.0	89
32	A general strategy of 3D printing thermosets for diverse applications. Materials Horizons, 2019, 6, 394-404.	12.2	89
33	Dual-Responsive Mesoporous Silica Nanoparticles Mediated Codelivery of Doxorubicin and Bcl-2 SiRNA for Targeted Treatment of Breast Cancer. Journal of Physical Chemistry C, 2016, 120, 22375-22387.	3.1	88
34	3D printing of biomimetic vasculature for tissue regeneration. Materials Horizons, 2019, 6, 1197-1206.	12.2	88
35	Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Materials Science and Engineering C, 2018, 82, 121-129.	7.3	87
36	Electrospun poly(l-lactic acid-co-É)-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation. Colloids and Surfaces B: Biointerfaces, 2015, 128, 106-114.	5.0	86

#	Article	IF	CITATIONS
37	Polymerizing Pyrrole Coated Poly (l-lactic acid-co-Îμ-caprolactone) (PLCL) Conductive Nanofibrous Conduit Combined with Electric Stimulation for Long-Range Peripheral Nerve Regeneration. Frontiers in Molecular Neuroscience, 2016, 9, 117.	2.9	83
38	Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo. International Journal of Nanomedicine, 2017, Volume 12, 3495-3507.	6.7	81
39	Electrospinning for healthcare: recent advancements. Journal of Materials Chemistry B, 2021, 9, 939-951.	5.8	81
40	The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Materials Science and Engineering C, 2018, 91, 715-726.	7.3	79
41	Conjugate Electrospun 3D Gelatin Nanofiber Sponge for Rapid Hemostasis. Advanced Healthcare Materials, 2021, 10, e2100918.	7.6	79
42	Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration. Colloids and Surfaces B: Biointerfaces, 2014, 121, 432-443.	5.0	78
43	Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles. Journal of Materials Chemistry B, 2021, 9, 1452-1465.	5.8	78
44	Synthesis of RGD-peptide modified poly(ester-urethane) urea electrospun nanofibers as a potential application for vascular tissue engineering. Chemical Engineering Journal, 2017, 315, 177-190.	12.7	77
45	Development of fish collagen/bioactive glass/chitosan composite nanofibers as a GTR/GBR membrane for inducing periodontal tissue regeneration. Biomedical Materials (Bristol), 2017, 12, 055004.	3.3	77
46	Development of Nanofiber Sponges-Containing Nerve Guidance Conduit for Peripheral Nerve Regeneration in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 26684-26696.	8.0	77
47	Fabrication of silk fibroin blended P(LLAâ€CL) nanofibrous scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 93A, 984-993.	4.0	75
48	Polypyrrole-coated poly(l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous nerve guidance conduit induced nerve regeneration in rat. Materials Science and Engineering C, 2019, 94, 190-199.	7.3	73
49	Multifunctional bioactive core-shell electrospun membrane capable to terminate inflammatory cycle and promote angiogenesis in diabetic wound. Bioactive Materials, 2021, 6, 2783-2800.	15.6	71
50	Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine. Acta Biomaterialia, 2014, 10, 4639-4649.	8.3	66
51	Cell Infiltration and Vascularization in Porous Nanoyarn Scaffolds Prepared by Dynamic Liquid Electrospinning. Journal of Biomedical Nanotechnology, 2014, 10, 603-614.	1.1	66
52	Heparin Loading and Pre-endothelialization in Enhancing the Patency Rate of Electrospun Small-Diameter Vascular Grafts in a Canine Model. ACS Applied Materials & Interfaces, 2013, 5, 2220-2226.	8.0	65
53	Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 76-83.	2.8	65
54	Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering. Advanced Fiber Materials, 2022, 4, 959-986.	16.1	63

#	Article	IF	CITATIONS
55	Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. Journal of Materials Chemistry B, 2018, 6, 740-752.	5.8	62
56	Lycium barbarum polysaccharide encapsulated Poly lactic-co-glycolic acid Nanofibers: cost effective herbal medicine for potential application in peripheral nerve tissue engineering. Scientific Reports, 2018, 8, 8669.	3.3	60
57	Electrospun nanoyarn scaffold and its application in tissue engineering. Materials Letters, 2012, 89, 146-149.	2.6	57
58	Electrospun SF/PLCL nanofibrous membrane: a potential scaffold for retinal progenitor cell proliferation and differentiation. Scientific Reports, 2015, 5, 14326.	3.3	57
59	Dual-layer aligned-random nanofibrous scaffolds for improving gradient microstructure of tendon-to-bone healing in a rabbit extra-articular model. International Journal of Nanomedicine, 2018, Volume 13, 3481-3492.	6.7	57
60	A 3D-Bioprinted dual growth factor-releasing intervertebral disc scaffold induces nucleus pulposus and annulus fibrosus reconstruction. Bioactive Materials, 2021, 6, 179-190.	15.6	57
61	Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)-acrylate for tissue engineering application. Journal of Materials Chemistry, 2012, 22, 25130.	6.7	56
62	Dexamethasone loaded core–shell SF/PEO nanofibers via green electrospinning reduced endothelial cells inflammatory damage. Colloids and Surfaces B: Biointerfaces, 2015, 126, 561-568.	5.0	56
63	Intra-articular injection of kartogenin-conjugated polyurethane nanoparticles attenuates the progression of osteoarthritis. Drug Delivery, 2018, 25, 1004-1012.	5.7	55
64	Enhancement of Schwann Cells Function Using Graphene-Oxide-Modified Nanofiber Scaffolds for Peripheral Nerve Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 2444-2456.	5.2	54
65	Covalent grafting of PEG and heparin improves biological performance of electrospun vascular grafts for carotid artery replacement. Acta Biomaterialia, 2021, 119, 211-224.	8.3	54
66	Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton's jelly of human umbilical cord. Materials Science and Engineering C, 2017, 70, 637-645.	7.3	53
67	Application of Wnt Pathway Inhibitor Delivering Scaffold for Inhibiting Fibrosis in Urethra Strictures: In Vitro and in Vivo Study. International Journal of Molecular Sciences, 2015, 16, 27659-27676.	4.1	52
68	A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloids and Surfaces B: Biointerfaces, 2015, 133, 179-188.	5.0	52
69	Construction and performance evaluation of Hep/silk-PLCL composite nanofiber small-caliber artificial blood vessel graft. Biomaterials, 2020, 259, 120288.	11.4	51
70	Nerve conduits constructed by electrospun P(LLA-CL) nanofibers and PLLA nanofiber yarns. Journal of Materials Chemistry B, 2015, 3, 8823-8831.	5.8	50
71	Laminin-coated nerve guidance conduits based on poly(<scp>l</scp> -lactide-co-glycolide) fibers and yarns for promoting Schwann cells' proliferation and migration. Journal of Materials Chemistry B, 2017, 5, 3186-3194.	5.8	50
72	Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration. Acta Biomaterialia, 2020, 117, 180-191.	8.3	50

Χιυ-Μει Μο

#	Article	IF	CITATIONS
73	Reduced Graphene Oxideâ€Encapsulated Microfiber Patterns Enable Controllable Formation of Neuronalâ€Like Networks. Advanced Materials, 2020, 32, e2004555.	21.0	49
74	Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration. Materials Science and Engineering C, 2017, 79, 507-515.	7.3	48
75	Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing. Applied Biochemistry and Biotechnology, 2016, 178, 1488-1502.	2.9	47
76	Heparin and Vascular Endothelial Growth Factor Loaded Poly(L-lactide-co-caprolactone) Nanofiber Covered Stent-Graft for Aneurysm Treatment. Journal of Biomedical Nanotechnology, 2015, 11, 1947-1960.	1.1	46
77	Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering. Journal of Materials Chemistry, 2012, 22, 2111-2119.	6.7	44
78	Green electrospun pantothenic acid/silk fibroin composite nanofibers: Fabrication, characterization and biological activity. Colloids and Surfaces B: Biointerfaces, 2014, 117, 14-20.	5.0	44
79	General Method for Generating Circular Gradients of Active Proteins on Nanofiber Scaffolds Sought for Wound Closure and Related Applications. ACS Applied Materials & Interfaces, 2018, 10, 8536-8545.	8.0	43
80	A novel knitted scaffold made of microfiber/nanofiber core–sheath yarns for tendon tissue engineering. Biomaterials Science, 2020, 8, 4413-4425.	5.4	43
81	Electrospun fibrous sponge via short fiber for mimicking 3D ECM. Journal of Nanobiotechnology, 2021, 19, 131.	9.1	43
82	A Method for Preparation of an Internal Layer of Artificial Vascular Graft Co-Modified with Salvianolic Acid B and Heparin. ACS Applied Materials & Interfaces, 2018, 10, 19365-19372.	8.0	42
83	A novel electrospun-aligned nanoyarn/three-dimensional porous nanofibrous hybrid scaffold for annulus fibrosus tissue engineering. International Journal of Nanomedicine, 2018, Volume 13, 1553-1567.	6.7	42
84	In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers. Frontiers of Materials Science, 2016, 10, 90-100.	2.2	41
85	Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111637.	5.0	41
86	Fabrication of scaffold based on gelatin and polycaprolactone (PCL) for wound dressing application. Journal of Drug Delivery Science and Technology, 2021, 63, 102501.	3.0	41
87	Three-dimensional porous gas-foamed electrospun nanofiber scaffold for cartilage regeneration. Journal of Colloid and Interface Science, 2021, 603, 94-109.	9.4	41
88	Vascular Endothelial Growth Factor-Capturing Aligned Electrospun Polycaprolactone/Gelatin Nanofibers Promote Patellar Ligament Regeneration. Acta Biomaterialia, 2022, 140, 233-246.	8.3	41
89	Degradation of electrospun SF/P(LLA-CL) blended nanofibrous scaffolds inÂvitro. Polymer Degradation and Stability, 2011, 96, 2266-2275.	5.8	40
90	Orientated Guidance of Peripheral Nerve Regeneration Using Conduits with a Microtube Array Sheet (MTAS). ACS Applied Materials & Interfaces, 2015, 7, 8437-8450.	8.0	40

#	Article	IF	CITATIONS
91	A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids and Surfaces B: Biointerfaces, 2016, 146, 632-641.	5.0	40
92	PLCL/Silk fibroin based antibacterial nano wound dressing encapsulating oregano essential oil: Fabrication, characterization and biological evaluation. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111352.	5.0	40
93	Chondroitin sulfate modified 3D porous electrospun nanofiber scaffolds promote cartilage regeneration. Materials Science and Engineering C, 2021, 118, 111312.	7.3	40
94	Fabrication and characterization of curcumin-loaded silk fibroin/P(LLA-CL) nanofibrous scaffold. Frontiers of Materials Science, 2014, 8, 354-362.	2.2	39
95	Orthogonally Functionalizable Polyurethane with Subsequent Modification with Heparin and Endothelium-Inducing Peptide Aiming for Vascular Reconstruction. ACS Applied Materials & Interfaces, 2016, 8, 14442-14452.	8.0	39
96	Photothermal Welding, Melting, and Patterned Expansion of Nonwoven Mats of Polymer Nanofibers for Biomedical and Printing Applications. Angewandte Chemie - International Edition, 2019, 58, 16416-16421.	13.8	39
97	Injectable double-crosslinked hydrogels with kartogenin-conjugated polyurethane nano-particles and transforming growth factor β3 for in-situ cartilage regeneration. Materials Science and Engineering C, 2020, 110, 110705.	7.3	39
98	Magnesium oxide-incorporated electrospun membranes inhibit bacterial infections and promote the healing process of infected wounds. Journal of Materials Chemistry B, 2021, 9, 3727-3744.	5.8	39
99	Synthesis of hollow mesoporous silica nanoparticles with tunable shell thickness and pore size using amphiphilic block copolymers as core templates. Dalton Transactions, 2014, 43, 11834.	3.3	38
100	Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty. International Journal of Nanomedicine, 2015, 10, 3337.	6.7	38
101	Application of a bilayer tubular scaffold based on electrospun poly(<scp>l</scp> -lactide-co-caprolactone)/collagen fibers and yarns for tracheal tissue engineering. Journal of Materials Chemistry B, 2017, 5, 139-150.	5.8	38
102	A tissue adhesives evaluated <i>in vitro</i> and <i>in vivo</i> analysis. Journal of Biomedical Materials Research - Part A, 2010, 94A, 326-332.	4.0	37
103	Effect of the Porous Microstructures of Poly(lactic-co-glycolic acid)/Carbon Nanotube Composites on the Growth of Fibroblast Cells. Soft Materials, 2010, 8, 239-253.	1.7	37
104	An in situ forming tissue adhesive based on poly(ethylene glycol)-dimethacrylate and thiolated chitosan through the Michael reaction. Journal of Materials Chemistry B, 2016, 4, 5585-5592.	5.8	37
105	Coaxial electrospinning multicomponent functional controlled-release vascular graft: Optimization of graft properties. Colloids and Surfaces B: Biointerfaces, 2017, 152, 432-439.	5.0	37
106	<p>Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-Îμ-caprolactone)/silk fibroin in vitro and in vivo</p> . International Journal of Nanomedicine, 2019, Volume 14, 4261-4276.	6.7	37
107	Reactive Oxygen Species-Based Biomaterials for Regenerative Medicine and Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 821288.	4.1	37
108	Encapsulation and Controlled Release of Heparin from Electrospun Poly(L-Lactide-co-ε-Caprolactone) Nanofibers. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 165-177.	3.5	36

Χιυ-Μει Μο

#	Article	IF	CITATIONS
109	Electrospun poly(<scp>l</scp> -lactide-co-caprolactone)–collagen–chitosan vascular graft in a canine femoral artery model. Journal of Materials Chemistry B, 2015, 3, 5760-5768.	5.8	36
110	Electrospun nanofibers of collagen-chitosan and P(LLA-CL) for tissue engineering. Frontiers of Materials Science in China, 2007, 1, 20-23.	0.5	35
111	Enhancement of chondrogenic differentiation of rabbit mesenchymal stem cells by oriented nanofiber yarn-collagen type I/hyaluronate hybrid. Materials Science and Engineering C, 2016, 58, 1071-1076.	7.3	35
112	Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold. Colloids and Surfaces B: Biointerfaces, 2017, 151, 314-323.	5.0	35
113	Physico-Chemical and Biological Evaluation of PLCL/SF Nanofibers Loaded with Oregano Essential Oil. Pharmaceutics, 2019, 11, 386.	4.5	35
114	Electrospun scaffolds from silk fibroin and their cellular compatibility. Journal of Biomedical Materials Research - Part A, 2010, 93A, 976-983.	4.0	34
115	Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers. Frontiers of Materials Science, 2013, 7, 129-142.	2.2	34
116	Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation. Colloids and Surfaces B: Biointerfaces, 2016, 144, 108-117.	5.0	34
117	Hyaluronic acid/EDC/NHS-crosslinked green electrospun silk fibroin nanofibrous scaffolds forÂtissue engineering. RSC Advances, 2016, 6, 99720-99728.	3.6	34
118	Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering. Frontiers of Materials Science, 2018, 12, 438-446.	2.2	34
119	Moving Electrospun Nanofibers and Bioprinted Scaffolds toward Translational Applications. Advanced Healthcare Materials, 2020, 9, e1901761.	7.6	33
120	Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers, 2022, 14, 1594.	4.5	33
121	Fabrication of cell penetration enhanced poly (l-lactic acid-co-É>-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning. Colloids and Surfaces B: Biointerfaces, 2014, 120, 47-54.	5.0	32
122	Thiol Click Modification of Cyclic Disulfide Containing Biodegradable Polyurethane Urea Elastomers. Biomacromolecules, 2015, 16, 1622-1633.	5.4	32
123	Molecularly engineered metal-based bioactive soft materials – Neuroactive magnesium ion/polymer hybrids. Acta Biomaterialia, 2019, 85, 310-319.	8.3	32
124	Metronidazole Topically Immobilized Electrospun Nanofibrous Scaffold: Novel Secondary Intention Wound Healing Accelerator. Polymers, 2022, 14, 454.	4.5	32
125	Electrospun nanofibers incorporating self-decomposable silica nanoparticles as carriers for controlled delivery of anticancer drug. RSC Advances, 2015, 5, 65897-65904.	3.6	31
126	A Controlled Release Codelivery System of MSCs Encapsulated in Dextran/Gelatin Hydrogel with TGF- <i>β</i> 3-Loaded Nanoparticles for Nucleus Pulposus Regeneration. Stem Cells International, 2016, 2016, 1-14.	2.5	31

Χιυ-Μει Μο

#	Article	IF	CITATIONS
127	A woven scaffold with continuous mineral gradients for tendon-to-bone tissue engineering. Composites Part B: Engineering, 2021, 212, 108679.	12.0	31
128	A novel approach via combination of electrospinning and FDM for tri-leaflet heart valve scaffold fabrication. Frontiers of Materials Science in China, 2009, 3, 359-366.	0.5	30
129	A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction. Frontiers of Materials Science, 2017, 11, 215-222.	2.2	30
130	The Effect of Plasma Treated PLGA/MWCNTs-COOH Composite Nanofibers on Nerve Cell Behavior. Polymers, 2017, 9, 713.	4.5	30
131	Fabrication of Silk Fibroin/P(LLAâ€CL) Aligned Nanofibrous Scaffolds for Nerve Tissue Engineering. Macromolecular Materials and Engineering, 2013, 298, 565-574.	3.6	29
132	Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. Journal of Biomaterials Applications, 2017, 32, 331-341.	2.4	29
133	Fabrication and characterization of TGF-β1-loaded electrospun poly (lactic-co-glycolic acid) core-sheath sutures. Colloids and Surfaces B: Biointerfaces, 2018, 161, 331-338.	5.0	28
134	Facile preparation of a controlled-release tubular scaffold for blood vessel implantation. Journal of Colloid and Interface Science, 2019, 539, 351-360.	9.4	28
135	Galactosylated chitosan-modified ethosomes combined with silk fibroin nanofibers is useful in transcutaneous immunization. Journal of Controlled Release, 2020, 327, 88-99.	9.9	28
136	Electrodeposition of calcium phosphate onto polyethylene terephthalate artificial ligament enhances graft-bone integration after anterior cruciate ligament reconstruction. Bioactive Materials, 2021, 6, 783-793.	15.6	28
137	Electrospinning of Heparin Encapsulated P(LLA-CL) Core/Shell Nanofibers. Nano Biomedicine and Engineering, 2010, 2, .	0.9	28
138	Macroporous nanofibrous vascular scaffold with improved biodegradability and smooth muscle cells infiltration prepared by dual phase separation technique. International Journal of Nanomedicine, 2018, Volume 13, 7003-7018.	6.7	27
139	Polyethylenimine and sodium cholate-modified ethosomes complex as multidrug carriers for theÂtreatment of melanoma through transdermal delivery. Nanomedicine, 2019, 14, 2395-2408.	3.3	26
140	Evaluation of biocompatibility and immunogenicity of micro/nanofiber materials based on tilapia skin collagen. Journal of Biomaterials Applications, 2019, 33, 1118-1127.	2.4	26
141	Silk fibroin/poly-(L-lactide-co-caprolactone) nanofiber scaffolds loaded with Huangbai Liniment to accelerate diabetic wound healing. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111557.	5.0	26
142	Evaluation of a novel tilapia-skin acellular dermis matrix rationally processed for enhanced wound healing. Materials Science and Engineering C, 2021, 127, 112202.	7.3	26
143	Versatile Nanocarrier Based on Functionalized Mesoporous Silica Nanoparticles to Codeliver Osteogenic Gene and Drug for Enhanced Osteodifferentiation. ACS Biomaterials Science and Engineering, 2019, 5, 710-723.	5.2	25
144	Tenogenic adipose-derived stem cell sheets with nanoyarn scaffolds for tendon regeneration. Materials Science and Engineering C, 2021, 119, 111506.	7.3	25

#	Article	IF	CITATIONS
145	Transcutaneous tumor vaccination combined with anti-programmed death-1 monoclonal antibody treatment produces a synergistic antitumor effect. Acta Biomaterialia, 2022, 140, 247-260.	8.3	25
146	Incorporation of magnesium oxide nanoparticles into electrospun membranes improves pro-angiogenic activity and promotes diabetic wound healing. Materials Science and Engineering C, 2022, 133, 112609.	7.3	25
147	Fabrication of Multilayered Nanofiber Scaffolds with a Highly Aligned Nanofiber Yarn for Anisotropic Tissue Regeneration. ACS Omega, 2020, 5, 24340-24350.	3.5	24
148	A multifunctional green antibacterial rapid hemostasis composite wound dressing for wound healing. Biomaterials Science, 2021, 9, 7124-7133.	5.4	24
149	Fabrication of poly(ester-urethane)urea elastomer/gelatin electrospun nanofibrous membranes for potential applications in skin tissue engineering. RSC Advances, 2016, 6, 73636-73644.	3.6	23
150	Rosuvastatin- and Heparin-Loaded Poly(<scp>l</scp> -lactide- <i>co</i> -caprolactone) Nanofiber Aneurysm Stent Promotes Endothelialization via Vascular Endothelial Growth Factor Type A Modulation. ACS Applied Materials & Interfaces, 2018, 10, 41012-41018.	8.0	23
151	Design and Fabrication of a Biomimetic Vascular Scaffold Promoting in Situ Endothelialization and Tunica Media Regeneration. ACS Applied Bio Materials, 2018, 1, 833-844.	4.6	23
152	<i>Helicobacter pylori</i> Ribosomal Protein-A2 Peptide/Silk Fibroin Nanofibrous Composites as Potential Wound Dressing. Journal of Biomedical Nanotechnology, 2019, 15, 507-517.	1.1	23
153	Harnessing electrospun nanofibers to recapitulate hierarchical fibrous structures of meniscus. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 201-213.	3.4	23
154	Fabrication and characterization of mineralized P(LLA-CL)/SF three-dimensional nanoyarn scaffolds. Iranian Polymer Journal (English Edition), 2015, 24, 29-40.	2.4	22
155	Electrospun nanoyarn and exosomes of adipose-derived stem cells for urethral regeneration: Evaluations in vitro and in vivo. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112218.	5.0	22
156	One-step cross-linked injectable hydrogels with tunable properties for space-filling scaffolds in tissue engineering. RSC Advances, 2015, 5, 40820-40830.	3.6	21
157	Stem cell homing-based tissue engineering using bioactive materials. Frontiers of Materials Science, 2017, 11, 93-105.	2.2	21
158	Sorbitan monooleate and poly(<scp>L</scp> ″actideâ€ <i>co</i> â€îµâ€ɛaprolactone) electrospun nanofibers for endothelial cell interactions. Journal of Biomedical Materials Research - Part A, 2009, 91A, 878-885.	4.0	20
159	A bi-layered tubular scaffold for effective anti-coagulant in vascular tissue engineering. Materials and Design, 2020, 194, 108943.	7.0	20
160	An atorvastatin calcium and poly(L-lactide-co-caprolactone) core-shell nanofiber-covered stent to treat aneurysms and promote reendothelialization. Acta Biomaterialia, 2020, 111, 102-117.	8.3	20
161	Electrospun nanoyarn seeded with myoblasts induced from placental stem cells for the application of stress urinary incontinence sling: An in vitro study. Colloids and Surfaces B: Biointerfaces, 2016, 144, 21-32.	5.0	19
162	Electrospun silk fibroin/poly (L-lactide-Îμ-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration. International Journal of Energy Production and Management, 2016, 3, 239-245.	3.7	19

#	Article	IF	CITATIONS
163	Development of poly (L-lactide-co-caprolactone) multichannel nerve conduit with aligned electrospun nanofibers for Schwann cell proliferation. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 323-329.	3.4	18
164	Rapid in situ cross-linking of hydrogel adhesives based on thiol-grafted bio-inspired catechol-conjugated chitosan. Journal of Biomaterials Applications, 2017, 32, 612-621.	2.4	18
165	Polyvinyl Alcohol/Hydroxyethylcellulose Containing Ethosomes as a Scaffold for Transdermal Drug Delivery Applications. Applied Biochemistry and Biotechnology, 2020, 191, 1624-1637.	2.9	18
166	Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release. International Journal of Molecular Sciences, 2016, 17, 2012.	4.1	17
167	Development of Dynamic Liquid and Conjugated Electrospun Poly(L-lactide-co-caprolactone)/Collagen Nanoyarns for Regulating Vascular Smooth Muscle Cells Growth. Journal of Biomedical Nanotechnology, 2017, 13, 303-312.	1.1	17
168	Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering. Frontiers of Materials Science, 2017, 11, 22-32.	2.2	17
169	Coaxial electrospinning of P(LLA L)/heparin biodegradable polymer nanofibers: potential vascular graft for substitution of femoral artery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 471-478.	3.4	17
170	A bilayer vascular scaffold with spatially controlled release of growth factors to enhance in situ rapid endothelialization and smooth muscle regeneration. Materials and Design, 2021, 204, 109649.	7.0	17
171	Delivery of mRNA vaccines and anti-PDL1 siRNA through non-invasive transcutaneous route effectively inhibits tumor growth. Composites Part B: Engineering, 2022, 233, 109648.	12.0	17
172	Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs. Polymers, 2022, 14, 1508.	4.5	17
173	Electrospun biodegradable nanofibers loaded with epigallocatechin gallate for guided bone regeneration. Composites Part B: Engineering, 2022, 238, 109920.	12.0	17
174	Composite Superelastic Aerogel Scaffolds Containing Flexible SiO ₂ Nanofibers Promote Bone Regeneration. Advanced Healthcare Materials, 2022, 11, .	7.6	17
175	A novel heparin loaded poly(l-lactide-co-caprolactone) covered stent for aneurysm therapy. Materials Letters, 2014, 116, 39-42.	2.6	16
176	Mechanical enhancement and <i>in vitro</i> biocompatibility of nanofibrous collagen-chitosan scaffolds for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 2255-2270.	3.5	16
177	Synthesis and characterization of incorporating mussel mimetic moieties into photoactive hydrogel adhesive. Colloids and Surfaces B: Biointerfaces, 2018, 161, 94-102.	5.0	16
178	The evaluation of functional small intestinal submucosa for abdominal wall defect repair in a rat model: Potent effect of sequential release of VEGF and TGF-β1 on host integration. Biomaterials, 2021, 276, 120999.	11.4	16
179	Heparin and rosuvastatin calcium-loaded poly(<scp>l</scp> -lactide-co-caprolactone) nanofiber-covered stent-grafts for aneurysm treatment. New Journal of Chemistry, 2017, 41, 9014-9023.	2.8	15
180	Leptin-Induced Angiogenesis of EA.Hy926 Endothelial Cells via the Akt and Wnt Signaling Pathways In Vitro and In Vivo. Frontiers in Pharmacology, 2019, 10, 1275.	3.5	15

#	Article	IF	CITATIONS
181	Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration. Materials Science and Engineering C, 2022, 134, 112643.	7.3	15
182	Diameter control of electrospun chitosanâ€collagen fibers. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1949-1955.	2.1	14
183	Fabrication and characterization of metal stent coating with drug-loaded nanofiber film for gallstone dissolution. Journal of Biomaterials Applications, 2016, 31, 784-796.	2.4	14
184	Mechanically-reinforced 3D scaffold constructed by silk nonwoven fabric and silk fibroin sponge. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111361.	5.0	14
185	Converging 3D Printing and Electrospinning: Effect of Poly(<scp>l</scp> â€lactide)/Gelatin Based Short Nanofibers Aerogels on Tracheal Regeneration. Macromolecular Bioscience, 2022, 22, e2100342.	4.1	14
186	Diethyldithiocarbamate/silk fibroin/polyethylene oxide nanofibrous for cancer therapy: Fabrication, characterization and in vitro evaluation. International Journal of Biological Macromolecules, 2021, 193, 293-299.	7.5	13
187	Effects of an avidinâ€biotin binding system on Schwann cells attachment, proliferation, and gene expressions onto electrospun scaffolds. Journal of Biomedical Materials Research - Part A, 2011, 97A, 321-329.	4.0	12
188	The use of SHP-2 gene transduced bone marrow mesenchymal stem cells to promote osteogenic differentiation and bone defect repair in rat. Journal of Biomedical Materials Research - Part A, 2016, 104, 1871-1881.	4.0	12
189	A facile approach for the fabrication of nano-attapulgite/poly(vinyl pyrrolidone)/biopolymers core–sheath ultrafine fibrous mats for drug controlled release. RSC Advances, 2016, 6, 49817-49823.	3.6	12
190	Electrospinning: An emerging technology to construct polymer-based nanofibrous scaffolds for diabetic wound healing. Frontiers of Materials Science, 2021, 15, 10-35.	2.2	12
191	Nanofiber configuration affects biological performance of decellularized meniscus extracellular matrix incorporated electrospun scaffolds. Biomedical Materials (Bristol), 2021, 16, 065013.	3.3	11
192	Photothermal-Triggered Structural Change of Nanofiber Scaffold Integrating with Graded Mineralization to Promote Tendon–Bone Healing. Advanced Fiber Materials, 2022, 4, 908-922.	16.1	11
193	Preparation and characterization of electrospun <i>in-situ</i> cross-linked gelatin-graphite oxide nanofibers. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 385-402.	3.5	10
194	Electrospun silk fibroin–poly (lactic-co-glycolic acid) membrane for nerve tissue engineering. Journal of Bioactive and Compatible Polymers, 2016, 31, 208-224.	2.1	10
195	The fabrication of 3D surface scaffold of collagen/poly (Lâ€lactideâ€coâ€caprolactone) with dynamic liquid system and its application in urinary incontinence treatment as a tissue engineered subâ€urethral sling: In vitro and in vivo study. Neurourology and Urodynamics, 2018, 37, 978-985.	1.5	10
196	An injectable double cross-linked hydrogel adhesive inspired by synergistic effects of mussel foot proteins for biomedical application. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111782.	5.0	10
197	Advances in electrospun scaffolds for meniscus tissue engineering and regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 923-949.	3.4	10
198	Synergistic effect of glucagon-like peptide-1 analogue liraglutide and ZnO on the antibacterial, hemostatic, and wound healing properties of nanofibrous dressings. Journal of Bioscience and Bioengineering, 2022, 134, 248-258.	2.2	10

#	Article	IF	CITATIONS
199	Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering. Science and Technology of Advanced Materials, 2015, 16, 045001.	6.1	9
200	Biocompatibility, hemostatic properties, and wound healing evaluation of tilapia skin collagen sponges. Journal of Bioactive and Compatible Polymers, 2021, 36, 44-58.	2.1	9
201	A photocrosslinking antibacterial decellularized matrix hydrogel with nanofiber for cutaneous wound healing. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112691.	5.0	9
202	Antibacterial ciprofloxacin hydrochloride incorporated PVA/regenerated silk fibroin nanofibers composite for wound dressing applications. Journal of Controlled Release, 2015, 213, e8-e9.	9.9	8
203	Evaluation of hydrogels for soft tissue adhesives in vitro and in vivo analyses. Frontiers of Materials Science, 2018, 12, 95-104.	2.2	8
204	Photothermal Welding, Melting, and Patterned Expansion of Nonwoven Mats of Polymer Nanofibers for Biomedical and Printing Applications. Angewandte Chemie, 2019, 131, 16568-16573.	2.0	8
205	Effective Reconstruction of Functional Urethra Promoted With ICG-001 Delivery Using Core-Shell Collagen/Poly(Llactide-co-caprolactone) [P(LLA-CL)] Nanoyarn-Based Scaffold: A Study in Dog Model. Frontiers in Bioengineering and Biotechnology, 2020, 8, 774.	4.1	8
206	Preparation and evaluation of poly(ester-urethane) urea/gelatin nanofibers based on different crosslinking strategies for potential applications in vascular tissue engineering. RSC Advances, 2018, 8, 35917-35927.	3.6	7
207	Green Electrospun Silk Fibroin Nanofibers Loaded with Cationic Ethosomes for Transdermal Drug Delivery. Chemical Research in Chinese Universities, 2021, 37, 488-495.	2.6	7
208	Astragalus and human mesenchymal stem cells promote wound healing by mediating immunomodulatory effects through paracrine signaling. Regenerative Medicine, 2022, 17, 219-232.	1.7	7
209	Surface heparinization and blood compatibility modification of small intestinal submucosa (SIS) for small-caliber vascular regeneration. Bio-Medical Materials and Engineering, 2017, 28, 213-222.	0.6	6
210	Restoring tracheal defects in a rabbit model with tissue engineered patches based on TGF-β3-encapsulating electrospun poly(l-lactic acid-co-ε-caprolactone)/collagen scaffolds. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 985-995.	2.8	6
211	A Method to Control Curcumin Release from <scp>PELA</scp> Fibers by Heat Treatment. Advances in Polymer Technology, 2018, 37, 647-653.	1.7	6
212	Silk fibroin/poly(Lâ€ʻlactic acidâ€ʻcoâ€ʻεâ€ʻcaprolactone) electrospun nanofibrous scaffolds exert a protective effect following myocardial infarction. Experimental and Therapeutic Medicine, 2019, 17, 3989-3998.	1.8	6
213	Cirsium Japonicum DC ingredients-loaded silk fibroin nanofibrous matrices with excellent hemostatic activity. Biomedical Physics and Engineering Express, 2018, 4, 025035.	1.2	5
214	The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty. Frontiers of Materials Science, 2016, 10, 346-357.	2.2	4
215	Preliminary study of a novel nanofiber-based valve integrated tubular graft as an alternative for a pulmonary valved artery. RSC Advances, 2016, 6, 84837-84846.	3.6	4
216	Development of Porous Alginate Microbeads Containing Silver Nanoparticles and Their Antibacterial Efficacy. Advances in Polymer Technology, 2016, 35, 298-306.	1.7	4

#	Article	IF	CITATIONS
217	Macroporous 3D Scaffold with Self-Fitting Capability for Effectively Repairing Massive Rotator Cuff Tear. ACS Biomaterials Science and Engineering, 2021, 7, 904-915.	5.2	4
218	Nanofiber Configuration of Electrospun Scaffolds Dictating Cell Behaviors and Cell-scaffold Interactions. Chemical Research in Chinese Universities, 2021, 37, 456-463.	2.6	4
219	Binary ethosomes-based transdermal patches assisted by metal microneedles significantly improve the bioavailability of carvedilol. Journal of Drug Delivery Science and Technology, 2022, 74, 103498.	3.0	3
220	Wearable Electronics: A Single Integrated 3D-Printing Process Customizes Elastic and Sustainable Triboelectric Nanogenerators for Wearable Electronics (Adv. Funct. Mater. 46/2018). Advanced Functional Materials, 2018, 28, 1870331.	14.9	2
221	Electrospun macroporous fibrous scaffolds. Journal of Controlled Release, 2015, 213, e60-e61.	9.9	1
222	Prodrug inspired biâ€layered electrospun membrane with properties of enhanced tissue integration for guided tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, , .	3.4	1
223	The Characterization of Poly(lactic-co-glycolic acid)/ Silk Fibroin Blend Nanofibrous Mats with the Methanol Vapor Treatment. Integrated Ferroelectrics, 2011, 128, 91-96.	0.7	0