
## Alexander Handwerger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2029002/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Generating landslide density heatmaps for rapid detection using open-access satellite radar data in<br>Google Earth Engine. Natural Hazards and Earth System Sciences, 2022, 22, 753-773.                                       | 3.6  | 18        |
| 2  | A new method to detect changes in displacement rates of slow-moving landslides using InSAR time series. Landslides, 2022, 19, 2233-2247.                                                                                        | 5.4  | 13        |
| 3  | Landslide Sensitivity and Response to Precipitation Changes in Wet and Dry Climates. Geophysical<br>Research Letters, 2022, 49, .                                                                                               | 4.0  | 10        |
| 4  | Inferring the Subsurface Geometry and Strength of Slowâ€Moving Landslides Using 3â€D Velocity<br>Measurements From the NASA/JPL UAVSAR. Journal of Geophysical Research F: Earth Surface, 2021, 126,<br>e2020JF005898.          | 2.8  | 13        |
| 5  | Unsaturated Flow Processes and the Onset of Seasonal Deformation in Slowâ€Moving Landslides.<br>Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005758.                                                     | 2.8  | 18        |
| 6  | When image correlation is needed: Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar and optical time series. Remote Sensing of Environment, 2021, 258, 112402.                        | 11.0 | 26        |
| 7  | Soil Moisture Retrieval Using L-Band SAR Over Landslide Regions in Northern California Grasslands. ,<br>2021, , .                                                                                                               |      | 0         |
| 8  | InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA.<br>Cryosphere, 2021, 15, 4823-4844.                                                                                                    | 3.9  | 17        |
| 9  | Life and death of slow-moving landslides. Nature Reviews Earth & Environment, 2020, 1, 404-419.                                                                                                                                 | 29.7 | 150       |
| 10 | InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions<br>with steep and mountainous terrain: An application to Nepal. Remote Sensing of Environment, 2020,<br>249, 111983.           | 11.0 | 97        |
| 11 | Mobility, Thickness, and Hydraulic Diffusivity of the Slowâ€Moving Monroe Landslide in California<br>Revealed by Lâ€Band Satellite Radar Interferometry. Journal of Geophysical Research: Solid Earth, 2019,<br>124, 7504-7518. | 3.4  | 47        |
| 12 | River channel width controls blocking by slow-moving landslides in California's Franciscan mélange.<br>Earth Surface Dynamics, 2019, 7, 879-894.                                                                                | 2.4  | 17        |
| 13 | Widespread Initiation, Reactivation, and Acceleration of Landslides in the Northern California Coast<br>Ranges due to Extreme Rainfall. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1782-1797.                 | 2.8  | 71        |
| 14 | A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Scientific<br>Reports, 2019, 9, 1569.                                                                                               | 3.3  | 117       |
| 15 | Submarine landslides triggered by destabilization of highâ€saturation hydrate anomalies. Geochemistry,<br>Geophysics, Geosystems, 2017, 18, 2429-2445.                                                                          | 2.5  | 28        |
| 16 | Historic drought puts the brakes on earthflows in Northern California. Geophysical Research<br>Letters, 2016, 43, 5725-5731.                                                                                                    | 4.0  | 50        |
| 17 | Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10281-10286.                     | 7.1  | 80        |
| 18 | Beyond the angle of repose: A review and synthesis of landslide processes in response to rapid uplift,<br>Eel River, Northern California. Geomorphology, 2015, 236, 109-131.                                                    | 2.6  | 56        |

| #  | Article                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Kinematics of earthflows in the Northern California Coast Ranges using satellite interferometry.<br>Geomorphology, 2015, 246, 321-333. | 2.6 | 49        |
| 20 | Controls on the seasonal deformation of slow-moving landslides. Earth and Planetary Science<br>Letters, 2013, 377-378, 239-247.        | 4.4 | 118       |
| 21 | †You are HERE': Connecting the dots with airborne lidar for geomorphic fieldwork. Geomorphology, 2013, 200, 172-183.                   | 2.6 | 112       |