List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2028257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science, 2004, 305, 994-997.	12.6	3,162
2	Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science, 2008, 319, 607-610.	12.6	2,309
3	The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 2016, 9, 3461-3482.	3.6	2,084
4	Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 2007, 27, 1547-1578.	3.5	1,733
5	The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 2053-2075.	3.4	1,309
6	Challenges in Combining Projections from Multiple Climate Models. Journal of Climate, 2010, 23, 2739-2758.	3.2	974
7	Going to the Extremes. Climatic Change, 2006, 79, 185-211.	3.6	966
8	Probabilistic 21st and 22nd century seaâ€level projections at a global network of tideâ€gauge sites. Earth's Future, 2014, 2, 383-406.	6.3	672
9	Quantifying Uncertainty in Projections of Regional Climate Change: A Bayesian Approach to the Analysis of Multimodel Ensembles. Journal of Climate, 2005, 18, 1524-1540.	3.2	512
10	Modelling sea level rise impacts on storm surges along US coasts. Environmental Research Letters, 2012, 7, 014032.	5.2	343
11	Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S Geophysical Research Letters, 2009, 36, .	4.0	281
12	The Detection and Attribution Model Intercomparison Project (DAMIPÂv1.0) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3685-3697.	3.6	280
13	Understanding future patterns of increased precipitation intensity in climate model simulations. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	275
14	Future population exposure to US heat extremes. Nature Climate Change, 2015, 5, 652-655.	18.8	270
15	Combinations of Natural and Anthropogenic Forcings in Twentieth-Century Climate. Journal of Climate, 2004, 17, 3721-3727.	3.2	248
16	Climate System Response to External Forcings and Climate Change Projections in CCSM4. Journal of Climate, 2012, 25, 3661-3683.	3.2	241
17	Toward a Quantitative Estimate of Future Heat Wave Mortality under Global Climate Change. Environmental Health Perspectives, 2011, 119, 701-706.	6.0	238
18	Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6. Earth System Dynamics, 2021, 12, 253-293.	7.1	236

#	Article	IF	CITATIONS
19	Bayesian Inference on Network Traffic Using Link Count Data. Journal of the American Statistical Association, 1998, 93, 557-573.	3.1	234
20	Mapping model agreement on future climate projections. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	197
21	Pattern scaling: Its strengths and limitations, and an update on the latest model simulations. Climatic Change, 2014, 122, 459-471.	3.6	185
22	Bayesian Modeling of Uncertainty in Ensembles of Climate Models. Journal of the American Statistical Association, 2009, 104, 97-116.	3.1	180
23	An Integrated Approach to Mid- and Upper-Level Turbulence Forecasting. Weather and Forecasting, 2006, 21, 268-287.	1.4	176
24	What would it take to achieve the Paris temperature targets?. Geophysical Research Letters, 2016, 43, 7133-7142.	4.0	164
25	Community climate simulations to assess avoided impacts in 1.5 and 2â€ [–] °C futures. Earth System Dynamics, 2017, 8, 827-847.	7.1	153
26	Joint Projections of Temperature and Precipitation Change from Multiple Climate Models: A Hierarchical Bayesian Approach. Journal of the Royal Statistical Society Series A: Statistics in Society, 2009, 172, 83-106.	1.1	127
27	Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environmental Research Letters, 2018, 13, 124010.	5.2	123
28	Extreme sea levels at different global warming levels. Nature Climate Change, 2021, 11, 746-751.	18.8	111
29	Relative outcomes of climate change mitigation related to global temperature versus sea-level rise. Nature Climate Change, 2012, 2, 576-580.	18.8	107
30	Allowances for evolving coastal flood risk under uncertain local sea-level rise. Climatic Change, 2016, 137, 347-362.	3.6	96
31	Bayesian Inference on Network Traffic Using Link Count Data. Journal of the American Statistical Association, 1998, 93, 557.	3.1	95
32	Changes in frost days in simulations of twentyfirst century climate. Climate Dynamics, 2004, 23, 495-511.	3.8	94
33	Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States. Geophysical Research Letters, 2007, 34, .	4.0	89
34	Developing and applying uncertain global climate change projections for regional water management planning. Water Resources Research, 2008, 44, .	4.2	89
35	Past and future sea-level rise along the coast of North Carolina, USA. Climatic Change, 2015, 132, 693-707.	3.6	88
36	Current and future U.S. weather extremes and El Niñ0. Geophysical Research Letters, 2007, 34, .	4.0	87

#	Article	IF	CITATIONS
37	Avoiding population exposure to heat-related extremes: demographic change vs climate change. Climatic Change, 2018, 146, 423-437.	3.6	87
38	Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environmental Research Letters, 2014, 9, 074003.	5.2	82
39	Using probabilistic climate change information from a multimodel ensemble for water resources assessment. Water Resources Research, 2009, 45, .	4.2	76
40	Title is missing!. Climatic Change, 2003, 60, 189-216.	3.6	75
41	Increasing prevalence of extreme summer temperatures in the U.S Climatic Change, 2012, 111, 487-495.	3.6	72
42	Decadal Prediction in the Pacific Region. Journal of Climate, 2010, 23, 2959-2973.	3.2	71
43	Two Approaches to Quantifying Uncertainty in Global Temperature Changes. Journal of Climate, 2006, 19, 4785-4796.	3.2	63
44	Mitigation of short-lived climate pollutants slows sea-level rise. Nature Climate Change, 2013, 3, 730-734.	18.8	58
45	Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5. Climatic Change, 2018, 146, 349-361.	3.6	52
46	Climate extremes: progress and future directions. International Journal of Climatology, 2009, 29, 317-319.	3.5	50
47	Future heat waves and surface ozone. Environmental Research Letters, 2018, 13, 064004.	5.2	50
48	Estimated impacts of emission reductions on wheat and maize crops. Climatic Change, 2018, 146, 533-545.	3.6	45
49	Human influence on European winter wind storms such as those of January 2018. Earth System Dynamics, 2019, 10, 271-286.	7.1	45
50	Equilibrium climate sensitivity in light of observations over the warming hiatus. Nature Climate Change, 2015, 5, 449-453.	18.8	44
51	Is Axillary Lymph Node Dissection Indicated for Early-Stage Breast Cancer? A Decision Analysis. Journal of Clinical Oncology, 1999, 17, 1465-1465.	1.6	41
52	Delayed detection of climate mitigation benefits due to climate inertia and variability. Proceedings of the United States of America, 2013, 110, 17229-17234.	7.1	40
53	How much climate change can be avoided by mitigation?. Geophysical Research Letters, 2009, 36,	4.0	36
54	Current and future impacts of extreme events in California. Climatic Change, 2011, 109, 43-70.	3.6	34

#	Article	IF	CITATIONS
55	US daily temperature records past, present, and future. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13977-13982.	7.1	32
56	Reframing climate change assessments around risk: recommendations for the US National Climate Assessment. Environmental Research Letters, 2017, 12, 080201.	5.2	30
57	Climate resilience of the top ten wheat producers in the Mediterranean and the Middle East. Regional Environmental Change, 2020, 20, 1.	2.9	30
58	Statistical analyses of freeway traffic flows. Journal of Forecasting, 2002, 21, 39-68.	2.8	29
59	Evaluating the accuracy of climate change pattern emulation for low warming targets. Environmental Research Letters, 2018, 13, 055006.	5.2	28
60	The Benefits of Reduced Anthropogenic Climate changE (BRACE): a synthesis. Climatic Change, 2018, 146, 287-301.	3.6	27
61	Hydroclimatology of the U.S. Gulf Coast Under Global Climate Change Scenarios. Physical Geography, 2011, 32, 561-582.	1.4	26
62	Changes in a suite of indicators of extreme temperature and precipitation under 1.5 and 2 degrees warming. Environmental Research Letters, 2018, 13, 035009.	5.2	26
63	A comparison of U.S. precipitation extremes under RCP8.5 and RCP4.5 with an application of pattern scaling. Climatic Change, 2018, 146, 335-347.	3.6	25
64	Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments. Climatic Change, 2018, 146, 319-333.	3.6	23
65	Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios. Environmental Research Letters, 2018, 13, 065001.	5.2	17
66	Comments on "Calculation of Average, Uncertainty Range, and Reliability of Regional Climate Changes from AOGCM Simulations via the â€~Reliability Ensemble Averaging' (REA) Method― Journal of Climate, 2003, 16, 883-884.	3.2	14
67	Data augmentation in multi-way contingency tables with fixed marginal totals. Journal of Statistical Planning and Inference, 2006, 136, 355-372.	0.6	14
68	Sensitivity of regional climate to global temperature and forcing. Environmental Research Letters, 2015, 10, 074001.	5.2	14
69	Characteristics of Future Warmer Base States in CESM2. Earth and Space Science, 2020, 7, e2020EA001296.	2.6	14
70	Patterns of change: whose fingerprint is seen in global warming?. Environmental Research Letters, 2011, 6, 044025.	5.2	12
71	Bayesian Inference on Network Traffic Using Link Count Data: Rejoinder. Journal of the American Statistical Association, 1998, 93, 576.	3.1	10
72	Flexible discriminant techniques for forecasting clear-air turbulence. Environmetrics, 2002, 13, 859-878.	1.4	9

#	Article	IF	CITATIONS
73	Emulating climate extreme indices. Environmental Research Letters, 2020, 15, 074006.	5.2	9
74	Extreme metrics from large ensembles: investigating the effects of ensemble size on their estimates. Earth System Dynamics, 2021, 12, 1427-1501.	7.1	8
75	Climate Models and Their Projections of Future Changes. Advances in Global Change Research, 2010, , 31-56.	1.6	5
76	Reply to 'Volcanic effects on climate'. Nature Climate Change, 2016, 6, 4-5.	18.8	4
77	Climate scenarios and their relevance and implications for impact studies. , 2020, , 11-29.		1
78	Modeling seaâ€level processes on the U.S. Atlantic Coast. Environmetrics, 2020, 31, e2609.	1.4	1
79	Beyond mean climate change: what climate models tell us about future climate extremes. , 0, , 99-119.		0