
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2027389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 2006, 95, 328-336.	8.2	285
2	Chemical characterization of tomato pomace. Journal of the Science of Food and Agriculture, 2006, 86, 1232-1236.	3.5	206
3	Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Research International, 2011, 44, 1244-1253.	6.2	147
4	Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genetic Resources and Crop Evolution, 2012, 59, 431-443.	1.6	146
5	Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT - Food Science and Technology, 2014, 55, 389-396.	5.2	117
6	Comparison of high-performance liquid chromatography and spectrofluorimetry for vitamin C analysis of green beans (Phaseolus vulgaris L.). European Food Research and Technology, 2000, 210, 220-225.	3.3	111
7	Carbohydrate composition of raw and extruded pulse flours. Food Research International, 2010, 43, 531-536.	6.2	109
8	An international regulatory review of food health-related claims in functional food products labeling. Journal of Functional Foods, 2020, 68, 103896.	3.4	99
9	Differences among Spanish and Latin-American banana cultivars: morphological, chemical and sensory characteristics. Food Chemistry, 1997, 59, 411-419.	8.2	97
10	Determination of Mono-, Di-, and Oligosaccharides in Legumes by High-Performance Liquid Chromatography Using an Amino-Bonded Silica Column. Journal of Agricultural and Food Chemistry, 1998, 46, 3648-3652.	5.2	91
11	The frontier between nutrition and pharma: The international regulatory framework of functional foods, food supplements and nutraceuticals. Critical Reviews in Food Science and Nutrition, 2020, 60, 1738-1746.	10.3	85
12	Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genetic Resources and Crop Evolution, 2012, 59, 851-863.	1.6	74
13	Lentil flour formulations to develop new snack-type products by extrusion processing: Phytochemicals and antioxidant capacity. Journal of Functional Foods, 2015, 19, 537-544.	3.4	71
14	Wild edible fruits as a potential source of phytochemicals with capacity to inhibit lipid peroxidation. European Journal of Lipid Science and Technology, 2013, 115, 176-185.	1.5	68
15	Nutrient composition of six wild edible Mediterranean Asteraceae plants of dietary interest. Journal of Food Composition and Analysis, 2014, 34, 163-170.	3.9	67
16	Nutritional characterization of tomato fiber as a useful ingredient for food industry. Innovative Food Science and Emerging Technologies, 2010, 11, 707-711.	5.6	65
17	Wild blackthorn (<i>Prunus spinosa</i> L.) and hawthorn (<i>Crataegus monogyna</i> Jacq.) fruits as valuable sources of antioxidants. Fruits, 2014, 69, 61-73.	0.4	65
18	Sanguinello and Tarocco (Citrus sinensis [L.] Osbeck): Bioactive compounds and colour appearance of blood oranges. Food Chemistry, 2019, 270, 395-402.	8.2	56

#	Article	IF	CITATIONS
19	Nutrients, phytochemicals and antioxidant activity in wild populations of Allium ampeloprasum L., a valuable underutilized vegetable. Food Research International, 2014, 62, 272-279.	6.2	53
20	Wild edible Swiss chard leaves (Beta vulgaris L. var. cicla): Nutritional, phytochemical composition and biological activities. Food Research International, 2019, 119, 612-621.	6.2	52
21	EFFECT OF EXTRUSION COOKING AND SODIUM BICARBONATE ADDITION ON THE CARBOHYDRATE COMPOSITION OF BLACK BEAN FLOURS. Journal of Food Processing and Preservation, 2002, 26, 113-128.	2.0	51
22	Fatty acids profiles of some Spanish wild vegetables. Food Science and Technology International, 2012, 18, 281-290.	2.2	45
23	Changes in Cell Wall Pectins Accompanying Tomato (Lycopersicon esculentum Mill.) Paste Manufacture. Journal of Agricultural and Food Chemistry, 2002, 50, 273-278.	5.2	39
24	Lycopene. Studies in Natural Products Chemistry, 2013, 40, 383-426.	1.8	39
25	Extending shelf-life and nutritive value of green beans (Phaseolus vulgaris L.), by controlled atmosphere storage: macronutrients. Food Chemistry, 2003, 80, 309-315.	8.2	38
26	Mineral and Trace Elements Content in 30 Accessions of Tomato Fruits (Solanum lycopersicum L.,) and Wild Relatives (Solanum pimpinellifolium L., Solanum cheesmaniae L. Riley, and Solanum habrochaites) Tj ETQq0	0 0.5 gBT /	Oværlock 10
27	Wild Fragaria vesca L. fruits: a rich source of bioactive phytochemicals. Food and Function, 2016, 7, 4523-4532.	4.6	38
28	Food-Based Dietary Guidelines around the World: A Comparative Analysis to Update AESAN Scientific Committee Dietary Recommendations. Nutrients, 2021, 13, 3131.	4.1	38
29	HPLC determination of organic acids in pineapple juices and nectars. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 198, 52-56.	0.6	36
30	Extending shelf-life and nutritive value of green beans (Phaseolus vulgaris L.), by controlled atmosphere storage: micronutrients. Food Chemistry, 2003, 80, 317-322.	8.2	34
31	Wild <i>Arbutus unedo</i> L. and <i>Rubus ulmifolius</i> Schott fruits are underutilized sources of valuable bioactive compounds with antioxidant capacity. Fruits, 2014, 69, 435-448.	0.4	32
32	Carotenoid content of wild edible young shoots traditionally consumed in Spain (<i>Asparagus) Tj ETQq0 0 0 rgB</i>	3T /Overloo 3.5	2k 10 Tf 50 2 30
33	Qualitative and nutritional comparison of goji berry fruits produced in organic and conventional systems. Scientia Horticulturae, 2019, 257, 108660.	3.6	28
34	Bioactive compounds and antioxidant capacity of extruded snack-type products developed from novel formulations of lentil and nutritional yeast flours. Food and Function, 2018, 9, 819-829.	4.6	27
35	A Review of the Role of Micronutrients and Bioactive Compounds on Immune System Supporting to Fight against the COVID-19 Disease. Foods, 2021, 10, 1088.	4.3	27
36	ldentification and quantification of soluble sugars in green beans by HPLC. European Food Research and Technology, 2002, 214, 254-258.	3.3	26

#	Article	IF	CITATIONS
37	Antioxidant phytochemicals of Hovenia dulcis Thunb. peduncles in different maturity stages. Journal of Functional Foods, 2015, 18, 1117-1124.	3.4	26
38	Eggplant fruit composition as affected by the cultivation environment and genetic constitution. Journal of the Science of Food and Agriculture, 2014, 94, 2774-2784.	3.5	25
39	Novel Ingredients Based on Grapefruit Freeze-Dried Formulations: Nutritional and Bioactive Value. Foods, 2019, 8, 506.	4.3	25
40	Simultaneous determination of vitamin B1 and B2 in complex cereal foods, by reverse phase isocratic HPLC-UV. Journal of Cereal Science, 2012, 55, 293-299.	3.7	24
41	Anthocyanin profile of red fruits and black carrot juices, purees and concentrates by HPLCâ€DADâ€ESI/MSâ€QTOF. International Journal of Food Science and Technology, 2016, 51, 2290-2300.	2.7	24
42	Nutritional and Phytochemical Composition of Mediterranean Wild Vegetables after Culinary Treatment. Foods, 2020, 9, 1761.	4.3	24
43	Diversity in composition of scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants and of interspecific hybrids between S. aethiopicum and common eggplant (S. melongena). Journal of Food Composition and Analysis, 2016, 45, 130-140.	3.9	23
44	Extrusion Process as an Alternative to Improve Pulses Products Consumption. A Review. Foods, 2021, 10, 1096.	4.3	23
45	Evaluation of the Antioxidant Potential of Mixed Fruit-Based Beverages: a New Insight on the Folin-Ciocalteu Method. Food Analytical Methods, 2018, 11, 2897-2906.	2.6	22
46	Neural Network Analysis of Spectroscopic Data of Lycopene and β-Carotene Content in Food Samples Compared to HPLC-UV-Vis. Journal of Agricultural and Food Chemistry, 2010, 58, 72-75.	5.2	21
47	Free sugars determination by HPLC in pineapple products. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 202, 233-237.	0.6	20
48	Optimization and Application of FL-HPLC for Folates Analysis in 20 Species of Mediterranean Wild Vegetables. Food Analytical Methods, 2015, 8, 302-311.	2.6	20
49	Antioxidant Phytochemicals in Pulses and their Relation to Human Health: A Review. Current Pharmaceutical Design, 2020, 26, 1880-1897.	1.9	19
50	Influence of freezing process on free sugars content of papaya and banana fruits. Journal of the Science of Food and Agriculture, 1998, 76, 315-319.	3.5	18
51	Traditional pastry with chestnut flowers as natural ingredients: An approach of the effects on nutritional value and chemical composition. Journal of Food Composition and Analysis, 2015, 44, 93-101.	3.9	18
52	Ethnobotanical and Food Composition Monographs of Selected Mediterranean Wild Edible Plants. , 2016, , 273-470.		18
53	Evidence of antiplatelet aggregation effects from the consumption of tomato products, according to EFSA health claim requirements. Critical Reviews in Food Science and Nutrition, 2020, 60, 1515-1522.	10.3	18
54	Solving the Spectroscopy Interference Effects of β-Carotene and Lycopene by Neural Networks. Journal of Agricultural and Food Chemistry, 2008, 56, 6261-6266.	5.2	17

#	Article	IF	CITATIONS
55	Montia fontana L. (Portulacaceae), an interesting wild vegetable traditionally consumed in the Iberian Peninsula. Genetic Resources and Crop Evolution, 2011, 58, 1105-1118.	1.6	17
56	Composition of eggplant cultivars of the <scp>O</scp> ccidental type and implications for the improvement of nutritional and functional quality. International Journal of Food Science and Technology, 2013, 48, 2490-2499.	2.7	17
57	Radial basis network analysis of color parameters to estimate lycopene content on tomato fruits. Talanta, 2010, 83, 9-13.	5.5	16
58	Revalorization of Tunisian wild Amaranthaceae halophytes: Nutritional composition variation at two different phenotypes stages. Journal of Food Composition and Analysis, 2020, 89, 103463.	3.9	16
59	Changes during ripening of papaya fruit in different storage systems. Food Chemistry, 1993, 46, 81-84.	8.2	15
60	FATTY ACID COMPOSITION OF TOMATO POMACE. Acta Horticulturae, 2001, , 175-180.	0.2	14
61	LYCOPENE AND HYDROXYMETHYLFURFURAL (HMF) EVALUATION IN TOMATO PRODUCTS. Acta Horticulturae, 2003, , 365-371.	0.2	14
62	Potential Nutrition and Health Claims in Deastringed Persimmon Fruits (Diospyros kaki L), Variety â€~Rojo Brillante', PDO 'Ribera del Xúquer'. Nutrients, 2020, 12, 1397.	4.1	13
63	A simple ion-exchange chromatographic determination of non-volatile organic acids in some Spanish exotic fruits. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 199, 214-218.	0.6	12
64	Effect of domestic processes and water hardness on soluble sugars content of chickpeas (Cicer) Tj ETQq0 0 0 r	gBT /Overl 8.2	ock 10 Tf 50 3 12
65	In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples. Food and Function, 2016, 7, 2706-2711.	4.6	12
66	Lack of a Synergistic Effect on Cardiometabolic and Redox Markers in a Dietary Supplementation with Anthocyanins and Xanthophylls in Postmenopausal Women. Nutrients, 2019, 11, 1533.	4.1	12
67	Fiber Compounds and Human Health. Current Pharmaceutical Design, 2017, 23, 2835-2849.	1.9	12
68	Scientific Evidence of the Beneficial Effects of Tomato Products on Cardiovascular Disease and Platelet Aggregation. Frontiers in Nutrition, 2022, 9, 849841.	3.7	12
69	Radial basis network analysis to estimate lycopene degradation kinetics in tomato-based products. Food Research International, 2012, 49, 453-458.	6.2	11
70	Three Amazonian palms as underestimated and little-known sources of nutrients, bioactive compounds and edible insects. Food Chemistry, 2022, 372, 131273.	8.2	11
71	Attitudes towards science among Spanish citizens: The case of critical engagers. Public Understanding of Science, 2018, 27, 690-707.	2.8	9
72	Study of Xoconostle (Opuntia spp.) Powder as Source of Dietary Fiber and Antioxidants. Foods, 2020, 9, 403.	4.3	9

#	Article	IF	CITATIONS
73	Stability of total folates/vitamin B9 in irradiated watercress and buckler sorrel during refrigerated storage. Food Chemistry, 2019, 274, 686-690.	8.2	8
74	Characterization of Extra Early Spanish Clementine Varieties (Citrus clementina Hort ex Tan) as a Relevant Source of Bioactive Compounds with Antioxidant Activity. Foods, 2020, 9, 642.	4.3	8
75	Assessment of Health Claims Related to Folic Acid in Food Supplements for Pregnant Women According to the European Regulation. Nutrients, 2021, 13, 937.	4.1	8
76	Food biopharmaceuticals as part of a sustainable bioeconomy: Edible vaccines case study. New Biotechnology, 2020, 59, 74-79.	4.4	7
77	THE NUTRITIONAL AND FUNCTIONAL POTENTIAL OF TOMATO BY-PRODUCTS. Acta Horticulturae, 2007, , 165-172.	0.2	6
78	The ability of spectrum autocorrelation models to predict the lycopene concentration in foods through visible spectroscopic data. Talanta, 2011, 85, 2479-2483.	5.5	6
79	Improvement and Validation of Phytate Determination in Edible Seeds and Derived Products, as Mineral Complexing Activity. Food Analytical Methods, 2017, 10, 3285-3291.	2.6	6
80	EFFECT OF POMACE ADDITION ON TOMATO PASTE QUALITY. Acta Horticulturae, 2003, , 399-406.	0.2	5
81	Scientific Culture and Social Appropriation of the Science. Social Epistemology, 2007, 21, 69-81.	1.2	5
82	FUTURE INNOVATIONS IN TOMATO PROCESSING. Acta Horticulturae, 2015, , 49-55.	0.2	5
83	Factors affecting consumer acceptance towards Spanish tomato products: a preliminary study on gazpacho soup. Acta Horticulturae, 2017, , 223-230.	0.2	5
84	Extrusion Cooking Effect on Carbohydrate Fraction in Novel Gluten-Free Flours Based on Chickpea and Rice. Molecules, 2022, 27, 1143.	3.8	5
85	YOUNG CONSUMER'S PREFERENCE RESPONSE TO KETCHUP PRODUCTS. Acta Horticulturae, 2015, , 339-344.	0.2	4
86	EUROPEAN NUTRITION AND HEALTH CLAIMS ON FOODS: THE CASE OF LYCOPENE. Acta Horticulturae, 2009, , 243-248.	0.2	4
87	Acceptance of New Formulations of Extruded Gluten Free Snacks Based on Pulse Flours by Spanish Millennial Consumers. Sustainability, 2022, 14, 3083.	3.2	4
88	PREFERENCE MAPPING OF KETCHUP ATTRIBUTES - SPANISH CONSUMERS CASE STUDY. Acta Horticulturae, 2013, , 203-209.	0.2	3
89	Wild Edible Plants as Sources of Carotenoids, Fibre, Phenolics and Other Non-Nutrient Bioactive Compounds. , 2016, , 187-205.		3
90	Food neophobia: Spanish case study related to new formulations based on traditional â€~gazpacho'. Acta Horticulturae, 2019, , 209-216.	0.2	3

#	Article	IF	CITATIONS
91	Lycopene. , 2018, , 179-196.		3
92	INNOVATION IN PROCESSING TOMATO: THE LAB AND THE FIELD. Acta Horticulturae, 2007, , 97-102.	0.2	3
93	Plants as biofactories: Edible vaccines production. Journal of Biotechnology, 2007, 131, S43-S44.	3.8	2
94	EFSA SCIENTIFIC REQUIREMENTS RELATED TO LYCOPENE AS ANTIOXIDANT, PREVENTION OF OXIDATIVE DAMAGE AND CARDIOVASCULAR HEALTH CLAIMS. Acta Horticulturae, 2015, , 303-307.	0.2	2
95	Consumer's preferences towards six new Spanish commercial tomato juices. Acta Horticulturae, 2019, , 217-224.	0.2	2
96	Tomato products and cardiovascular disease prevention. Acta Horticulturae, 2019, , 201-208.	0.2	2
97	Bioactive compounds in oranges from the Mediterranean climate area. , 2020, , 293-309.		2
98	Chemical Properties, Rheological Behavior, and Melissopalynological Analysis of Selected Brazilian Honeys from Hovenia dulcis Flowering. Brazilian Archives of Biology and Technology, 0, 63, .	0.5	2
99	CHANGES IN TOMATO PECTIN CHARACTERISTICS DURING FRUIT PROCESSING FOR PASTE. Acta Horticulturae, 1999, , 457-460.	0.2	1
100	STABILITY OF LYCOPENE IN TOMATO PRODUCTS AND EXTRACTS. Acta Horticulturae, 2009, , 189-194.	0.2	0
101	PREDICTION OF LYCOPENE STABILITY IN TOMATO PRODUCTS BY RADIAL BASIS NETWORK ANALYSIS. Acta Horticulturae, 2013, , 149-154.	0.2	0
102	NEW DEVELOPMENTS IN LYCOPENE ANALYSIS BY SPECTROSCOPIC AND CHROMATOGRAPHIC TECHNIQUES, ACCOMPANIED WITH MATHEMATICAL MODELLING. Acta Horticulturae, 2015, , 259-265.	0.2	0
103	FOOD CONTROL: APPLICATION OF RADIAL BASIS NETWORK ANALYSIS (RBN) IN GAZPACHO AND RELATED TOMATO PRODUCTS. Acta Horticulturae, 2015, , 291-296.	0.2	0
104	Claims related to lycopene and olive oil as functional ingredients in tomato food products: salmorejo. Acta Horticulturae, 2017, , 231-236.	0.2	0
105	EVALUATION OF METHODS USED TO MEASURE TOMATO SERUM JUICE AND PASTE CONSISTENCY. Acta Horticulturae, 1999, , 431-434.	0.2	0
106	IMPLEMENTATION OF A MULTIDISCIPLINARY STRATEGY FOR CONTINUOUS FORMATIVE EVALUATION USING ON-LINE TOOLS. , 2016, , .		0
107	A MULTIDISCIPLINARY STRATEGY FOR CONTINUOUS FORMATIVE SELF-EVALUATION IN ENGLISH USING ON-LINE TOOLS. INTED Proceedings, 2017, , .	0.0	0
108	DESIGN AND IMPLEMENTATION OF A PLURI-DISCIPLINARY SELF-EVALUATION STRATEGY. INTED Proceedings, 2018, , .	0.0	0

#	Article	IF	CITATIONS
109	FLIPPED LEARNING VS. MASTER CLASS: PRELIMINARY RESULTS IN THE DESIGN AND IMPLEMENTATION OF THIS PEDAGOGICAL MODEL IN PHARMACY DEGREE. , 2019, , .		0
110	LEARNING BY DOING ABOUT HEALTH AND SUSTAINABILITY THROUGH FOOD LABELING. EDULEARN Proceedings, 2022, , .	0.0	0