Yasuhiro Yokota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2026895/publications.pdf

Version: 2024-02-01

136950 114465 4,079 67 32 63 citations h-index g-index papers 69 69 69 2082 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science, 2023, 379, .	12.6	97
2	Resurfacing processes constrained by crater distribution on Ryugu. Icarus, 2022, 377, 114911.	2.5	6
3	Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth. Science, 2022, 375, 1011-1016.	12.6	78
4	Three-axial shape distributions of pebbles, cobbles and boulders smaller than a few meters on asteroid Ryugu. Icarus, 2022, 381, 115007.	2.5	1
5	Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu. Nature Astronomy, 2022, 6, 214-220.	10.1	136
6	Sensitivity degradation of optical navigation camera and attempts for dust removal., 2022,, 415-431.		1
7	Development of Numerical Model of the Thermal State of an Asteroid with Locally Rough Surface and Its Application. International Journal of Thermophysics, 2022, 43, 1.	2.1	1
8	Site selection for the Hayabusa2 artificial cratering and subsurface material sampling on Ryugu. Planetary and Space Science, 2022, 219, 105519.	1.7	4
9	Crater depth-to-diameter ratios on asteroid 162173 Ryugu. Icarus, 2021, 354, 114016.	2.5	12
10	Spectral characterization of the craters of Ryugu as observed by the NIRS3 instrument on-board Hayabusa2. Icarus, 2021, 357, 114253.	2.5	7
11	Collisional history of Ryugu's parent body from bright surface boulders. Nature Astronomy, 2021, 5, 39-45.	10.1	42
12	Thermally altered subsurface material of asteroid (162173) Ryugu. Nature Astronomy, 2021, 5, 246-250.	10.1	47
13	Alignment determination of the Hayabusa2 laser altimeter (LIDAR). Earth, Planets and Space, 2021, 73, .	2.5	3
14	Post-arrival calibration of Hayabusa2's optical navigation cameras (ONCs): Severe effects from touchdown events. Icarus, 2021, 360, 114353.	2.5	11
15	Anomalously porous boulders on (162173) Ryugu as primordial materials from its parent body. Nature Astronomy, 2021, 5, 766-774.	10.1	30
16	Improved method of hydrous mineral detection by latitudinal distribution of 0.7- \hat{l} /4m surface reflectance absorption on the asteroid Ryugu. Icarus, 2021, 360, 114348.	2.5	9
17	Geologic History and Crater Morphology of Asteroid (162173) Ryugu. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006572.	3. 6	10
18	Spectrophotometric Properties of 162173 Ryugu's Surface from the NIRS3 Opposition Observations. Planetary Science Journal, 2021, 2, 178.	3.6	3

#	Article	IF	Citations
19	Resurfacing processes on asteroid (162173) Ryugu caused by an artificial impact of Hayabusa2's Small Carry-on Impactor. Icarus, 2021, 366, 114530.	2.5	24
20	Opposition Observations of 162173 Ryugu: Normal Albedo Map Highlights Variations in Regolith Characteristics. Planetary Science Journal, 2021, 2, 177.	3.6	12
21	Development of image texture analysis technique for boulder distribution measurements: Applications to asteroids Ryugu and Itokawa. Planetary and Space Science, 2021, 204, 105249.	1.7	6
22	Hayabusa2 pinpoint touchdown near the artificial crater on Ryugu: Trajectory design and guidance performance. Advances in Space Research, 2021, 68, 3093-3140.	2.6	9
23	Spectrally blue hydrated parent body of asteroid (162173) Ryugu. Nature Communications, 2021, 12, 5837.	12.8	23
24	The spatial distribution of impact craters on Ryugu. Icarus, 2020, 338, 113527.	2.5	25
25	Motion reconstruction of the small carry-on impactor aboard Hayabusa2. Astrodynamics, 2020, 4, 289-308.	2.4	7
26	Global photometric properties of (162173) Ryugu. Astronomy and Astrophysics, 2020, 639, A83.	5.1	37
27	Surface roughness of asteroid (162173) Ryugu and comet 67P/Churyumov–Gerasimenko inferred from∢i>in situ∢i>observations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3178-3193.	4.4	11
28	Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution. Science, 2020, 368, 654-659.	12.6	158
29	Highly porous nature of a primitive asteroid revealed by thermal imaging. Nature, 2020, 579, 518-522.	27.8	100
30	An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science, 2020, 368, 67-71.	12.6	183
31	Image-based autonomous navigation of Hayabusa2 using artificial landmarks: The design and brief in-flight results of the first landing on asteroid Ryugu. Astrodynamics, 2020, 4, 89-103.	2.4	34
32	Images from the surface of asteroid Ryugu show rocks similar to carbonaceous chondrite meteorites. Science, 2019, 365, 817-820.	12.6	99
33	Multivariable statistical analysis of spectrophotometry and spectra of (162173) Ryugu as observed by JAXA Hayabusa2 mission. Astronomy and Astrophysics, 2019, 629, A13.	5.1	15
34	Updated inflight calibration of Hayabusa2's optical navigation camera (ONC) for scientific observations during the cruise phase. Icarus, 2019, 325, 153-195.	2.5	48
35	Boulder size and shape distributions on asteroid Ryugu. Icarus, 2019, 331, 179-191.	2.5	107
36	The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science, 2019, 364, 272-275.	12.6	262

3

#	Article	IF	CITATIONS
37	Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryuguâ€"A spinning topâ€"shaped rubble pile. Science, 2019, 364, 268-272.	12.6	410
38	The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes. Science, 2019, 364, 252.	12.6	313
39	The Western Bulge of 162173 Ryugu Formed as a Result of a Rotationally Driven Deformation Process. Astrophysical Journal Letters, 2019, 874, L10.	8.3	30
40	The MASCOT landing area on asteroid (162173) Ryugu: Stereo-photogrammetric analysis using images of the ONC onboard the Hayabusa2 spacecraft. Astronomy and Astrophysics, 2019, 632, L4.	5.1	9
41	The descent and bouncing path of the Hayabusa2 lander MASCOT at asteroid (162173) Ryugu. Astronomy and Astrophysics, 2019, 632, L3.	5.1	18
42	Initial inflight calibration for Hayabusa2 optical navigation camera (ONC) for science observations of asteroid Ryugu. Icarus, 2018, 300, 341-359.	2.5	56
43	Detection of Intact Lava Tubes at Marius Hills on the Moon by SELENE (Kaguya) Lunar Radar Sounder. Geophysical Research Letters, 2017, 44, 10,155.	4.0	62
44	Evidence of impact melt sheet differentiation of the lunar South Poleâ€Aitken basin. Journal of Geophysical Research E: Planets, 2017, 122, 1672-1686.	3.6	22
45	Mission Concepts of Unprecedented Zipangu Underworld of the Moon Exploration (UZUME) Project. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2016, 14, Pk_147-Pk_150.	0.2	5
46	Development of an application scheme for the SELENE/SP lunar reflectance model for radiometric calibration of hyperspectral and multispectral sensors. Planetary and Space Science, 2016, 124, 76-83.	1.7	33
47	Global occurrence trend of high-Ca pyroxene on lunar highlands and its implications. Journal of Geophysical Research E: Planets, 2015, 120, 831-848.	3.6	13
48	Geologic structure generated by largeâ€impact basin formation observed at the South Poleâ€Aitken basin on the Moon. Geophysical Research Letters, 2014, 41, 2738-2745.	4.0	49
49	Variation of the lunar highland surface roughness at baseline 0.15–100 km and the relationship to relative age. Geophysical Research Letters, 2014, 41, 1444-1451.	4.0	11
50	An explanation of bright areas inside Shackleton Crater at the Lunar South Pole other than waterâ€ice deposits. Geophysical Research Letters, 2013, 40, 3814-3818.	4.0	23
51	Usability of lunar reflectance model based on SELENE/SP for planned HISUI radiometric calibration. , 2013, , .		1
52	Linking Carbon Dioxide Variability at Hateruma Station to East Asia Emissions by Bayesian Inversion. Geophysical Monograph Series, 2013, , 163-172.	0.1	2
53	A new type of pyroclastic deposit on the Moon containing Feâ€spinel and chromite. Geophysical Research Letters, 2013, 40, 4549-4554.	4.0	38
54	Asymmetric crustal growth on the Moon indicated by primitive farside highland materials. Nature Geoscience, 2012, 5, 384-388.	12.9	79

YASUHIRO YOKOTA

#	Article	IF	CITATIONS
55	Compositional evidence for an impact origin of the Moon's Procellarum basin. Nature Geoscience, 2012, 5, 775-778.	12.9	45
56	Olivine-rich exposures in the South Pole-Aitken Basin. Icarus, 2012, 218, 331-344.	2.5	57
57	Massive layer of pure anorthosite on the Moon. Geophysical Research Letters, 2012, 39, .	4.0	102
58	Preflight and In-Flight Calibration of the Spectral Profiler on Board SELENE (Kaguya). IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 4660-4676.	6.3	35
59	The widespread occurrence of high-calcium pyroxene in bright-ray craters on the Moon and implications for lunar-crust composition. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	18
60	Characterization of Multiband Imager Aboard SELENE. Space Science Reviews, 2010, 154, 79-102.	8.1	27
61	Deriving the Absolute Reflectance of Lunar Surface Using SELENE (Kaguya) Multiband Imager Data. Space Science Reviews, 2010, 154, 57-77.	8.1	67
62	Possible mantle origin of olivine around lunar impact basins detected by SELENE. Nature Geoscience, 2010, 3, 533-536.	12.9	184
63	The global distribution of pure anorthosite on the Moon. Nature, 2009, 461, 236-240.	27.8	265
64	Long-Lived Volcanism on the Lunar Farside Revealed by SELENE Terrain Camera. Science, 2009, 323, 905-908.	12.6	133
65	Possible lunar lava tube skylight observed by SELENE cameras. Geophysical Research Letters, 2009, 36, .	4.0	134
66	Ultramafic impact melt sheet beneath the South Pole–Aitken basin on the Moon. Geophysical Research Letters, 2009, 36, .	4.0	61
67	Performance and scientific objectives of the SELENE (KAGUYA) Multiband Imager. Earth, Planets and Space, 2008, 60, 257-264.	2.5	116