Kiumars Bahrami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2026011/publications.pdf

Version: 2024-02-01

		186265	175258
101	3,087	28	52
papers	citations	h-index	g-index
120	120	120	2964
139	139	139	2864
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Color removal from wastewater using a synthetic high-performance antifouling GO-CPTMS@Pd-TKHPP/polyether sulfone nanofiltration membrane. Environmental Science and Pollution Research, 2022, 29, 20463-20478.	5.3	5
2	Homoselective synthesis of 5â€substituted 1 <i>H</i> â€tetrazoles and oneâ€pot synthesis of 2,4,5â€trisubstuted imidazole compounds using BNPs@SiO ₂ â€TPPTSA as a stable and new reusable nanocatalyst. Applied Organometallic Chemistry, 2021, 35, e6144.	l 3.5	14
3	Reduced graphene oxide supported Ti-based metal–organic framework as a novel electrochemical sensor for electro-oxidation of Propranolol. Journal of Materials Science: Materials in Electronics, 2021, 32, 8396-8409.	2.2	2
4	Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis. Journal of Industrial and Engineering Chemistry, 2021, 97, 1-78.	5 . 8	127
5	A review of the role of hydrogen peroxide in organic transformations. Journal of Industrial and Engineering Chemistry, 2021, 104, 295-332.	5.8	30
6	Palladium Nanoparticles Immobilized with Polymer Containing Nitrogen-Based Ligand: A Highly Efficient Catalyst for Suzuki–Miyaura and Mizoroki–Heck Coupling Reactions. Catalysis Letters, 2020, 150, 660-673.	2.6	31
7	Efficient one-pot synthetic methods for the preparation of 3,4-dihydropyrimidinones and 1,4-dihydropyridine derivatives using BNPs@SiO2(CH2)3NHSO3H as a ligand and metal free acidic heterogeneous nano-catalyst. Polyhedron, 2020, 178, 114340.	2.2	30
8	Design, Synthesis, Characterization and Application of BNPs@SiO2(CH2)3NH-CC-AMP-Pd (0) as a New Reusable Nano-Catalyst for Suzuki and Heck Cross-Coupling Reactions. Catalysis Letters, 2020, 150, 1571-1590.	2.6	9
9	Synthesis of 5â€substituted 1 <i>H</i> à€ŧetrazoles and oxidation of sulfides by using boehmite nanoparticles/nickelâ€curcumin as a robust and extremely efficient green nanocatalyst. Applied Organometallic Chemistry, 2020, 34, e6014.	3.5	11
10	Ag@CeO2 nanoparticles with "rice ball―configuration as an efficient and heterogeneous nanocatalyst for the selective oxidation of sulfides to sulfones with 30% H2O2. Monatshefte FÃ⅓r Chemie, 2020, 151, 1419-1424.	1.8	0
11	Palladium Nanoparticles Doped on the Chitosan Nanofibers Modified with 2â€Aminobenzaldehyde as a Nanocatalyst in Crossâ€Coupling Reactions. ChemistrySelect, 2020, 5, 5489-5496.	1.5	7
12	BNPs@Cur-Pd as a versatile and recyclable green nanocatalyst for Suzuki, Heck and Stille coupling reactions. Journal of Experimental Nanoscience, 2020, 15, 182-201.	2.4	10
13	Mesoporous titania–ceria mixed oxide (MTCMO): a highly efficient and reusable heterogeneous nanocatalyst for one-pot synthesis of β-phosphonomalonates <i>via ⟨ ·⟩ a cascade Knoevenagel–phospha-Michael addition reaction. Journal of Experimental Nanoscience, 2020, 15, 54-69.</i>	2.4	5
14	Acidic Functionalized Nanobohemite: An Active Catalyst for Methyl Ester Production. International Journal of Chemical Reactor Engineering, 2019, 17, .	1.1	1
15	A Practical Method for the Preparation of Sulfonyl Chlorides and Sulfonamides from Thiols using H 2 O 2 â€₹APC Reagent System. ChemistrySelect, 2019, 4, 8554-8557.	1.5	5
16	Fe ₃ O ₄ @BNPsâ€CPTMSâ€Chitosanâ€Pd(0) as an Efficient and Stable Heterogeneous Magnetic Nanocatalyst for the Chemoselective Oxidation of Alcohols and Homoselective Synthesis of 5â€Subestituted 1 <i>H</i> i>â€Tetrazoles. ChemistrySelect, 2019, 4, 8183-8194.	1.5	20
17	Highly efficient polymerâ€stabilized palladium heterogeneous catalyst: Synthesis, characterization and application for Suzuki–Miyaura and Mizoroki–Heck coupling reactions. Applied Organometallic Chemistry, 2019, 33, e5121.	3.5	16
18	Copper(II) Oxide Nanoparticles Impregnated on Melamineâ€Modified UiOâ€66â€NH ₂ Metal–Organic Framework for C–N Crossâ€Coupling Reaction and Synthesis of 2â€Substituted Benzimidazoles. Journal of Heterocyclic Chemistry, 2019, 56, 2853-2865.	2.6	10

#	Article	IF	Citations
19	Role of L-cysteine and CdS as promoted agents in photocatalytic activity of TiO2 nanoparticles. Journal of Environmental Chemical Engineering, 2019, 7, 103454.	6.7	5
20	High yielding protocol for direct conversion of thiols to sulfonyl chlorides and sulfonamides. Journal of Sulfur Chemistry, 2019, 40, 256-264.	2.0	17
21	Synthesis of a novel stabilized basic ionic liquid through immobilization on boehmite nanoparticles: A robust nanocatalyst for biodiesel production from soybean oil. Renewable Energy, 2019, 138, 70-78.	8.9	26
22	Hexyltriphenylphosphonium Bromide as an Absolutely Chemoselective Ionic Liquid Catalyst in the Threeâ€Component Reaction of Aryl Aldehydes, Acetophenones and Malononitrile. ChemistrySelect, 2019, 4, 6190-6193.	1.5	4
23	A new strategy to design a graphene oxide supported palladium complex as a new heterogeneous nanocatalyst and application in carbon–carbon and carbonâ€heteroatom crossâ€coupling reactions. Applied Organometallic Chemistry, 2019, 33, e4842.	3.5	26
24	Fe ₃ O ₄ @BNPs@SiO ₂ â \in "SO ₃ H as a highly chemoselective heterogeneous magnetic nanocatalyst for the oxidation of sulfides to sulfoxides or sulfones. RSC Advances, 2019, 9, 36103-36112.	3.6	19
25	Design of BNPs-TAPC Palladium Complex as a Reusable Heterogeneous Nanocatalyst for the O-Arylation of Phenols and N-Arylation of Amines. Catalysis Letters, 2019, 149, 688-698.	2.6	30
26	Synthesis, characterization and application of graphene palladium porphyrin as a nanocatalyst for the coupling reactions such as: Suzukiâ€Miyaura and Mizorokiâ€Heck. Applied Organometallic Chemistry, 2018, 32, e4102.	3.5	38
27	Core/shell structured ZnO@SiO ₂ -TTIP composite nanoparticles as an effective catalyst for the synthesis of 2-substituted benzimidazoles and benzothiazoles. Journal of Experimental Nanoscience, 2018, 13, 272-283.	2.4	16
28	Reusable BNPsâ€SiO ₂ @(CH ₂) ₃ NHSO ₃ Hâ€catalysed selective oxidation of sulfides to sulfones. Applied Organometallic Chemistry, 2018, 32, e4553.	3.5	22
29	Mesoporous Titaniaâ€Alumina Mixed Oxide: A Heterogeneous Nanocatalyst for the Synthesis of 2â€Substituted Benzimidazoles, Benzothiazoles and Benzoxazoles. ChemistrySelect, 2018, 3, 10875-10880.	1.5	21
30	Preparation of Polydopamine Sulfamic Acid-Functionalized Silica Gel as Heterogeneous and Recyclable Nanocatalyst for Acetylation of Alcohols and Amines Under Solvent-Free Conditions. Catalysis Letters, 2018, 148, 2734-2745.	2.6	17
31	Ferromagnetic nanoparticleâ€supported copper complex: A highly efficient and reusable catalyst for threeâ€component syntheses of 1,4â€disubstituted 1,2,3â€triazoles and C–S coupling of aryl halides. Applied Organometallic Chemistry, 2017, 31, e3714.	3.5	20
32	Manganese mediated oxidation of progesterone in alkaline medium: Mechanism study and quantitative determination. Electrochimica Acta, 2017, 225, 292-302.	5.2	18
33	Energy recovery and hygienic water production from wastewater using an innovative integrated microbial fuel cell–membrane separation process. Energy, 2017, 141, 1350-1362.	8.8	32
34	Suzuki and Heck crossâ€coupling reactions using ferromagnetic nanoparticleâ€supported palladium complex as an efficient and recyclable heterogeneous nanocatalyst in sodium dodecylsulfate micelles. Applied Organometallic Chemistry, 2017, 31, e3627.	3.5	18
35	An environmentally friendly electrochemical method for synthesis of pyrazole derivatives. Journal of Electroanalytical Chemistry, 2016, 760, 1-5.	3.8	6
36	Copper immobilized ferromagnetic nanoparticle triazine dendrimer (FMNP@TD–Cu(<scp>ii</scp>))-catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles. New Journal of Chemistry, 2016, 40, 3447-3455.	2.8	40

#	Article	IF	Citations
37	Investigating the mixing sequence and the Si content in SAPO-34 synthesis for selective conversion of methanol to light olefins using morpholine & TEAOH templates. RSC Advances, 2016, 6, 17583-17594.	3.6	15
38	[BTBA]Cl-FeCl ₃ as an Efficient Lewis Acid Ionic Liquid for the Synthesis of Perimidine Derivatives. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 852-856.	0.6	11
39	Preparation of trimetallic Fe(3)–Ce(8)–Zr(12)–SBA-15 and its application in benzylation of arenes. Journal of Porous Materials, 2016, 23, 47-55.	2.6	1
40	TiO ₂ nanoparticles catalysed synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles using hydrogen peroxide under ambient light. Journal of Experimental Nanoscience, 2016, 11, 148-160.	2.4	20
41	SBA-15-Prâ \in SO3H: An efficient, environment friendly and recyclable heterogeneous nanoreactor catalyst for the one-pot multicomponent synthesis of \hat{I}^2 -acetamido ketones. Journal of Chemical Sciences, 2015, 127, 167-172.	1.5	5
42	Sodium Azide as a Catalyst for the Hydration of Nitriles to Primary Amides in Water. Journal of Chemical Research, 2015, 39, 267-269.	1.3	5
43	An increase in the cooperative catalytic performance of SBA-15 and TFE in selective oxidation of organic sulfides. Journal of Molecular Liquids, 2015, 207, 334-337.	4.9	14
44	The new synthesis and characterization of SBA-15-Pr–NMe3OH: a tailored and reusable Bronsted base nanoreactor for the conversion of nitriles into amides using H2O2. Journal of Porous Materials, 2015, 22, 211-218.	2.6	2
45	Ethane-1,2-Diaminium Hydrogen Sulfate: Recyclable Organocatalyst for One-Pot Synthesis of \hat{l}^2 -Amino Ketones by a Three-Component Mannich Reaction. Journal of Chemical Research, 2014, 38, 223-225.	1.3	5
46	The preparation and characterization of boehmite nanoparticles-TAPC: a tailored and reusable nanocatalyst for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones. New Journal of Chemistry, 2014, 38, 5515-5520.	2.8	52
47	Knoevenagel condensation in aqueous micellar media using EDAHS as a new Bronsted acidic ionic liquid. Journal of the Iranian Chemical Society, 2014, 11, 1675-1680.	2.2	3
48	Synthesis of polysubstituted pyridines via reactions of chalcones and malononitrile in alcohols using Amberlite IRA-400 (OHâ^'). Tetrahedron Letters, 2013, 54, 5293-5298.	1.4	22
49	Preparation of esters and amides from carboxylic acids and N-formylation of amines promoted by 1,3,5-triazo-2,4,6-triphosphorine-2,2,4,4,6,6-hexachloride (TAPC). Tetrahedron Letters, 2013, 54, 5064-5068.	1.4	25
50	Rapid and Convenient Method for the Synthesis of Symmetrical Disulfides. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 981-988.	1.6	5
51	Synthesis of Sulfonyl Chlorides and Sulfonic Acids in SDS Micelles. Synthesis, 2012, 2012, 316-322.	2.3	19
52	TiCl ₄ -promoted desulfurization of thiocarbonyls and oxidation of sulfides in the presence of H ₂ O ₂ . Journal of Sulfur Chemistry, 2012, 33, 155-163.	2.0	12
53	A novel approach towards dethioacetalization reactions with H2O2–SOCl2 system. Chinese Chemical Letters, 2012, 23, 81-85.	9.0	11
54	Synthesis of sulfonamides and sulfonic esters via reaction of amines and phenols with thiols using H2O2–POCl3 system. Tetrahedron, 2012, 68, 5095-5101.	1.9	41

#	Article	IF	CITATIONS
55	Synthesis of sulfonyl chlorides and thiosulfonates from H2O2–TiCl4. Tetrahedron Letters, 2012, 53, 354-358.	1.4	61
56	Thioacetalization of aldehydes and ketones in SDS micelles. Journal of Sulfur Chemistry, 2011, 32, 397-403.	2.0	3
57	SBA-15-Pr–SO3H as nanoreactor catalyzed oxidation of sulfides into sulfoxides. Catalysis Science and Technology, 2011, 1, 389.	4.1	56
58	Cyanuric chloride as promoter for the oxidation of sulfides and deoxygenation of sulfoxides. Tetrahedron Letters, 2011, 52, 6420-6423.	1.4	33
59	One-pot synthesis of 1,2,4,5-tetrasubstituted and 2,4,5-trisubstituted imidazoles by zinc oxide as efficient and reusable catalyst. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2011, 142, 159-162.	1.8	36
60	TAPC-Catalyzed Synthesis of Thioethers from Thiols and Alcohols. Synlett, 2011, 2011, 2206-2210.	1.8	20
61	TAPC-Promoted Synthesis of Sulfonyl Chlorides from Sulfonic Acids. Synlett, 2011, 2011, 2671-2674.	1.8	9
62	Synthesis of 1,2-disubstituted benzimidazoles, 2-substituted benzimidazoles and 2-substituted benzothiazoles in SDS micelles. Green Chemistry, 2010, 12, 1237.	9.0	203
63	Direct conversion of thiols and disulfides into sulfonamides. Tetrahedron Letters, 2010, 51, 4843-4846.	1.4	40
64	TMSCl-promoted selective oxidation of sulfides to sulfoxides with hydrogen peroxide. Tetrahedron Letters, 2010, 51, 6939-6941.	1.4	31
65	Oxidation of sulfides to sulfoxides with H ₂ O ₂ /HNO ₃ reagent system. Journal of Sulfur Chemistry, 2010, 31, 83-88.	2.0	26
66	Trimethylsilyl Chloride Promoted Selective Desulfurization of Thiocarbonyls to Carbonyls with Hydrogen Peroxide. Synthesis, 2010, 2010, 4282-4286.	2.3	12
67	TAPC-Promoted Oxidation of Sulfides and Deoxygenation of Sulfoxides. Journal of Organic Chemistry, 2010, 75, 6208-6213.	3.2	139
68	Amberlite IRA-400 (OH ^{â^'}) as a Catalyst in the Preparation of 4 <i>H</i> -Benzo[<i>b</i>)pyrans in Aqueous Media. Synthetic Communications, 2010, 40, 1492-1499.	2.1	41
69	Desulfurization of Thioamides into Amides with H ₂ O ₂ /ZrCl ₄ Reagent System. Synthesis, 2009, 2009, 369-371.	2.3	22
70	A Novel, Practical Synthesis of Sulfonyl Chlorides from Thiol and Disulfide Derivatives. Synlett, 2009, 2009, 3223-3223.	1.8	3
71	H2O2/Fe(NO3)3-Promoted Synthesis of 2-Arylbenzimidazoles and 2-Arylbenzothiazoles. Synlett, 2009, 2009, 569-572.	1.8	61
72	A Novel, Practical Synthesis of Sulfonyl Chlorides from Thiol and Disulfide Derivatives. Synlett, 2009, 2009, 2773-2776.	1.8	32

#	Article	IF	Citations
73	Transformation of Oximes and Alcohols to Carbonyl Compounds Using Amberlite IRAâ€400 Supported Chromic Acid in the Presence of Zirconium Tetrachloride. Chinese Journal of Chemistry, 2009, 27, 384-388.	4.9	7
74	H2O2/SOCl2: a useful reagent system for the conversion of thiocarbonyls to carbonyl compounds. Tetrahedron, 2009, 65, 7658-7661.	1.9	28
75	Highly Efficient Solvent-Free Synthesis of Dihydropyrimidinones Catalyzed by Zinc Oxide. Synthetic Communications, 2009, 39, 1801-1808.	2.1	27
76	Direct Conversion of Thiols to Sulfonyl Chlorides and Sulfonamides. Journal of Organic Chemistry, 2009, 74, 9287-9291.	3.2	124
77	POCl3as a catalytic activator for H2O2activation in selective sulfide oxidation. Journal of Sulfur Chemistry, 2009, 30, 581-584.	2.0	9
78	Selective and Efficient Oxidation of Aldehydes to Their Corresponding Carboxylic Acids Using H ₂ O ₂ /HCl in the Presence of Hydroxylamine Hydrochloride. Chinese Journal of Chemistry, 2008, 26, 1119-1121.	4.9	10
79	Highly selective catalytic Friedel–Crafts sulfonylation of aromatic compounds using a FeCl3-based ionic liquid. Tetrahedron Letters, 2008, 49, 3931-3934.	1.4	42
80	Mild and Highly Efficient Method for the Synthesis of 2-Arylbenzimidazoles and 2-Arylbenzothiazoles. Journal of Organic Chemistry, 2008, 73, 6835-6837.	3.2	408
81	Mild and Efficient Deoxygenation of Sulfoxides to Sulfides with Triflic Anhydride/Potassium Iodide Reagent System. Synthesis, 2008, 2008, 2543-2546.	2.3	43
82	H2O2/Tf2O System: An Efficient Oxidizing Reagent for Selective Oxidation of Sulfanes. Synthesis, 2008, 2008, 1682-1684.	2.3	30
83	An Efficient Method for Aromatic Friedel–Crafts Acylation Reactions. Chemistry Letters, 2008, 37, 844-845.	1.3	12
84	TCT as a Rapid and Efficient Catalyst for the Synthesis of 1,5-Benzodiazepines. Bulletin of the Korean Chemical Society, 2008, 29, 1280-1282.	1.9	5
85	The efficient and chemoselective MoO3-catalyzed oxidation of sulfides to sulfoxides and sulfones with H2O2. Canadian Journal of Chemistry, 2007, 85, 7-11.	1.1	48
86	A Simple and Efficient One-Pot Synthesis of 2-Substituted Benzimidazoles. Synthesis, 2007, 2007, 547-550.	2.3	165
87	A Novel Method for the Deoxygenation of Sulfoxides with the PPh3/Br2/CuBr System. Chemistry Letters, 2007, 36, 1324-1325.	1.3	40
88	ZrCl ₄ as an Efficient Catalyst for Crossedâ€Aldol Condensation of Cyclic Ketones with Aromatic Aldehydes in Refluxing Ethanol. Journal of the Chinese Chemical Society, 2007, 54, 807-810.	1.4	6
89	<i>>p</i> â€₹SA Catalyzed Synthesis of 2,4,5â€₹riarylimidazoles from Ammonium Heptamolybdate Tetrahydrate in TBAI. Journal of the Chinese Chemical Society, 2007, 54, 829-833.	1.4	40
90	Selective oxidation of sulfides to sulfoxides and sulfones using hydrogen peroxide (H2O2) in the presence of zirconium tetrachloride. Tetrahedron Letters, 2006, 47, 2009-2012.	1.4	118

#	ARTICLE	IF	CITATIONS
91	H ₂ O ₂ /HCl as a new and efficient system for synthesis of 2-substituted benzimidazoles. Journal of Chemical Research, 2006, 2006, 783-784.	1.3	25
92	Photoinduced Electron Transfer Reactions of Aryl Benzyl Sulfides Promoted by 2,4,6-Triphenylpyrilium Tetrafluoroborate (TP+BF4-). Bulletin of the Korean Chemical Society, 2006, 27, 106-110.	1.9	11
93	Selective and Convenient Oxidation of Thiols to Disulfides Using n-Butyltriphenylphosphonium Dichromate (Bun PPh3)2Cr2O7 in Solution, under Solvent-Free Conditions and Microwave Irradiation ChemInform, 2005, 36, no.	0.0	0
94	3-Carboxypyridinium Chlorochromate-Aluminum Chloride — An Efficient and Inexpensive Reagent System for the Selective Oxidation of Sulfides to Sulfoxides and Sulfones in Solution and under Microwave Irradiation ChemInform, 2005, 36, no.	0.0	1
95	Selective Oxidation of Sulfides to Sulfoxides and Sulfones Usingn-Butyltriphenylphosphonium Dichromate (BunPPh3)2Cr2O7in the Presence of Aluminium Chloride in Solution and Under Microwave Irradiation. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 2751-2766.	1.6	11
96	3-Carboxypyridinium chlorochromate \hat{A} — aluminium chloride \hat{A} — An efficient and inexpensive reagent system for the selective oxidation of sulfides to sulfoxides and sulfones in solution and under microwave irradiation. Canadian Journal of Chemistry, 2005, 83, 115-121.	1.1	23
97	SELECTIVE AND CONVENIENT OXIDATION OF THIOLS TO DISULFIDES USING n-BUTYLTRIPHENYLPHOSPHONIUM DICHROMATE (Bu n PPh3)2Cr2O7 IN SOLUTION, UNDER SOLVENT-FREE CONDITIONS AND MICROWAVE IRRADIATION. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 2315-2321.	1.6	11
98	Efficient and Convenient Deprotection of Thiocarbonyl to Carbonyl Compounds Using 3-Carboxypyridinium and 2,2'-Bipyridinium Chlorochromates in Solution, Dry Media, and under Microwave Irradiation. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2004, 135, 411-418.	1.8	18
99	Efficient and Convenient Deprotection of Thiocarbonyl to Carbonyl Compounds Using 3-Carboxypyridinium and 2,2′-Bipyridinium Chlorochromates in Solution, Dry Media, and under Microwave Irradiation ChemInform, 2004, 35, no.	0.0	O
100	Transformation of Thiocarbonyls to Their Corresponding Carbonyl Compounds Using n-Butyltriphenylphosphonium Dichromate (Bu ⁿ PPh ₃) ₂ Cr ₂ O ₇ in Solution and under Microwave Irradiation. Bulletin of the Korean Chemical Society, 2003, 24, 1002-1004.	1.9	15
101	Methyl ester production in microchannel using a new grafted basic ionic liquid as the nanocatalyst. Chemical Papers, 0 , 1 .	2.2	3