Giulia Veronesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2025759/publications.pdf

Version: 2024-02-01

35	1,490	17 h-index	34
papers	citations		g-index
38	38	38	2762 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Particle and Fibre Toxicology, 2014, 11, 13.	6.2	225
2	Lung cancer screening with low-dose computed tomography: A non-invasive diagnostic protocol for baseline lung nodules. Lung Cancer, 2008, 61, 340-349.	2.0	166
3	Estimating Overdiagnosis in Low-Dose Computed Tomography Screening for Lung Cancer. Annals of Internal Medicine, 2012, 157, 776.	3.9	144
4	The ID21 X-ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials. Journal of Analytical Atomic Spectrometry, 2017, 32, 477-493.	3.0	140
5	Visualization, quantification and coordination of Ag ⁺ ions released from silver nanoparticles in hepatocytes. Nanoscale, 2016, 8, 17012-17021.	5.6	68
6	Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells. Nanoscale, 2015, 7, 7352-7360.	5.6	64
7	Subcellular Chemical Imaging: New Avenues in Cell Biology. Trends in Cell Biology, 2020, 30, 173-188.	7.9	59
8	The ID21 Scanning X-ray Microscope at ESRF. Journal of Physics: Conference Series, 2013, 425, 182004.	0.4	54
9	Exposure-dependent Ag ⁺ release from silver nanoparticles and its complexation in AgS ₂ sites in primary murine macrophages. Nanoscale, 2015, 7, 7323-7330.	5.6	54
10	Environmental manganese compounds accumulate as Mn(ii) within the Golgi apparatus of dopamine cells: relationship between speciation, subcellular distribution, and cytotoxicity. Metallomics, 2014, 6, 822.	2.4	51
11	E-cigarettes May Support Smokers With High Smoking-Related Risk Awareness to Stop Smoking in the Short Run: Preliminary Results by Randomized Controlled Trial. Nicotine and Tobacco Research, 2019, 21, 119-126.	2.6	46
12	Benefits of e-cigarettes in smoking reduction and in pulmonary health among chronic smokers undergoing a lung cancer screening program at 6 months. Addictive Behaviors, 2020, 103, 106222.	3.0	46
13	Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis. Current Biology, 2019, 29, 968-978.e4.	3.9	45
14	XAS Investigation of Silver(I) Coordination in Copper(I) Biological Binding Sites. Inorganic Chemistry, 2015, 54, 11688-11696.	4.0	31
15	X-Ray Absorption Studies of Zn2+ Binding Sites in Bacterial, Avian, and Bovine Cytochrome bc1 Complexes. Biophysical Journal, 2007, 93, 2934-2951.	0.5	29
16	Impact of labile metal nanoparticles on cellular homeostasis. Current developments in imaging, synthesis and applications. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1566-1577.	2.4	26
17	Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins. Journal of Synchrotron Radiation, 2010, 17, 41-52.	2.4	23
18	Toxicity and chemical transformation of silver nanoparticles in A549 lung cells: dose-rate-dependent genotoxic impact. Environmental Science: Nano, 2021, 8, 806-821.	4.3	20

#	Article	IF	CITATIONS
19	Insights into polythiol-assisted AgNP dissolution induced by bio-relevant molecules. Environmental Science: Nano, 2018, 5, 1911-1920.	4.3	18
20	In Vivo Biotransformations of Indium Phosphide Quantum Dots Revealed by X-Ray Microspectroscopy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35630-35640.	8.0	18
21	Thiolate-Capped Silver Nanoparticles: Discerning Direct Grafting from Sulfidation at the Metal–Ligand Interface by Interrogating the Sulfur Atom. Journal of Physical Chemistry C, 2020, 124, 13467-13478.	3.1	18
22	Benefits of E-Cigarettes Among Heavy Smokers Undergoing a Lung Cancer Screening Program: Randomized Controlled Trial Protocol. JMIR Research Protocols, 2016, 5, e21.	1.0	17
23	Nuclear translocation of silver ions and hepatocyte nuclear receptor impairment upon exposure to silver nanoparticles. Environmental Science: Nano, 2020, 7, 1373-1387.	4.3	16
24	Subcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae. Environmental Microbiology, 2021, 23, 6569-6586.	3.8	14
25	Biotransformation of Silver Nanoparticles into Oro-Gastrointestinal Tract by Integrated In Vitro Testing Assay: Generation of Exposure-Dependent Physical Descriptors for Nanomaterial Grouping. Nanomaterials, 2021, 11, 1587.	4.1	13
26	Chemical Composition and Sulfur Speciation in Bulk Tissue by X-Ray Spectroscopy and X-Ray Microscopy: Corneal Development during Embryogenesis. Biophysical Journal, 2012, 103, 357-364.	0.5	12
27	X-ray absorption near-edge structure (XANES) spectroscopy identifies differential sulfur speciation in corneal tissue. Analytical and Bioanalytical Chemistry, 2013, 405, 6613-6620.	3.7	12
28	Structures of Silver Fingers and a Pathway to Their Genotoxicity. Angewandte Chemie - International Edition, 2022, , .	13.8	12
29	Structural properties of rutile TiO2 nanoparticles accumulated in a model of gastrointestinal epithelium elucidated by micro-beam x-ray absorption fine structure spectroscopy. Applied Physics Letters, 2012, 100, .	3.3	11
30	Safer-by-design biocides made of tri-thiol bridged silver nanoparticle assemblies. Nanoscale Horizons, 2020, 5, 507-513.	8.0	11
31	Study of the Early Stages of Mn Intrusion in Corroded Glass by Means of Combined SR FTIR/νXRF Imaging and XANES Spectroscopy. Procedia Chemistry, 2013, 8, 239-247.	0.7	7
32	X-ray absorption studies of Zn2+-binding sites in Escherichia coli transhydrogenase and its \hat{l}^2 H91K mutant. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 494-500.	1.0	6
33	<i>Ab initio</i> analysis of the x-ray absorption spectrum of the myoglobin–carbon monoxide complex: Structure and vibrations. Physical Review B, 2010, 82, .	3.2	6
34	Correlative transmission electron microscopy and high-resolution hard X-ray fluorescence microscopy of cell sections to measure trace element concentrations at the organelle level. Journal of Structural Biology, 2021, 213, 107766.	2.8	5
35	Structures of Silver Fingers and a Pathway to Their Genotoxicity. Angewandte Chemie, 0, , .	2.0	0

3