
Gary W Blissard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2025738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Cellular Genes Involved in Baculovirus GP64 Trafficking to the Plasma Membrane. Journal of Virology, 2022, 96, .	3.4	2
2	Efficient entry of budded virions of Autographa californica multiple nucleopolyhedrovirus into Spodoptera frugiperda cells is dependent on dynamin, Rab5, and Rab11. Insect Biochemistry and Molecular Biology, 2020, 123, 103409.	2.7	4
3	Transcriptional Responses of the <i>Trichoplusia ni</i> Midgut to Oral Infection by the Baculovirus Autographa californica Multiple Nucleopolyhedrovirus. Journal of Virology, 2019, 93, .	3.4	20
4	A highâ€quality chromosomeâ€level genome assembly of a generalist herbivore, <i>Trichoplusia ni</i> . Molecular Ecology Resources, 2019, 19, 485-496.	4.8	47
5	Identification of insect genes involved in baculovirus AcMNPV entry into insect cells. Virology, 2019, 527, 1-11.	2.4	8
6	Distinct Roles of Cellular ESCRT-I and ESCRT-III Proteins in Efficient Entry and Egress of Budded Virions of Autographa californica Multiple Nucleopolyhedrovirus. Journal of Virology, 2018, 92, .	3.4	27
7	Global Analysis of Baculovirus Autographa californica Multiple Nucleopolyhedrovirus Gene Expression in the Midgut of the Lepidopteran Host Trichoplusia ni. Journal of Virology, 2018, 92, .	3.4	21
8	Baculovirus Entry and Egress from Insect Cells. Annual Review of Virology, 2018, 5, 113-139.	6.7	116
9	Production of GP64-free virus-like particles from baculovirus-infected insect cells. Journal of General Virology, 2018, 99, 265-274.	2.9	15
10	Roles of Cellular NSF Protein in Entry and Nuclear Egress of Budded Virions of Autographa californica Multiple Nucleopolyhedrovirus. Journal of Virology, 2017, 91, .	3.4	23
11	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	2.7	154
12	Autographa californica multiple nucleopolyhedrovirus GP64 protein: Analysis of domain I and V amino acid interactions and membrane fusion activity. Virology, 2016, 488, 259-270.	2.4	5
13	Trichoplusia ni Kinesin-1 Associates with Autographa californica Multiple Nucleopolyhedrovirus Nucleocapsid Proteins and Is Required for Production of Budded Virus. Journal of Virology, 2016, 90, 3480-3495.	3.4	14
14	Structural features, evolutionary relationships, and transcriptional regulation of C-type lectin-domain proteins in Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 75-85.	2.7	65
15	A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 23-37.	2.7	43
16	Overview of chitin metabolism enzymes in Manduca sexta: Identification, domain organization, phylogenetic analysis and gene expression. Insect Biochemistry and Molecular Biology, 2015, 62, 114-126.	2.7	95
17	Phylogenetic analysis and expression profiling of the pattern recognition receptors: Insights into molecular recognition of invading pathogens in Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 38-50.	2.7	44

18 Preface. Insect Biochemistry and Molecular Biology, 2015, 62, 1.

2.7 1

GARY W BLISSARD

#	Article	IF	CITATIONS
19	The immune signaling pathways of Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 64-74.	2.7	79
20	Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. Insect Biochemistry and Molecular Biology, 2015, 62, 127-141.	2.7	88
21	Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 51-63.	2.7	82
22	The vacuolar protein sorting genes in insects: A comparative genomeÂview. Insect Biochemistry and Molecular Biology, 2015, 62, 211-225.	2.7	26
23	Complete Dosage Compensation and Sex-Biased Gene Expression in the Moth Manduca sexta. Genome Biology and Evolution, 2014, 6, 526-537.	2.5	52
24	Defining the roles of the baculovirus regulatory proteins IEO and IE1 in genome replication and early gene transactivation. Virology, 2014, 468-470, 160-171.	2.4	7
25	Transcriptome Responses of the Host Trichoplusia ni to Infection by the Baculovirus Autographa californica Multiple Nucleopolyhedrovirus. Journal of Virology, 2014, 88, 13781-13797.	3.4	60
26	The Transcriptome of the Baculovirus Autographa californica Multiple Nucleopolyhedrovirus in Trichoplusia ni Cells. Journal of Virology, 2013, 87, 6391-6405.	3.4	152
27	Cellular VPS4 Is Required for Efficient Entry and Egress of Budded Virions of Autographa californica Multiple Nucleopolyhedrovirus. Journal of Virology, 2012, 86, 459-472.	3.4	28
28	Functional Analysis of the Autographa californica Multiple Nucleopolyhedrovirus GP64 Terminal Fusion Loops and Interactions with Membranes. Journal of Virology, 2012, 86, 9617-9628.	3.4	22
29	The Autographa californica multiple nucleopolyhedrovirus lef-5 gene is required for productive infection. Virology, 2011, 416, 54-64.	2.4	13
30	Autographa californica Multiple Nucleopolyhedrovirus GP64 Protein: Roles of Histidine Residues in Triggering Membrane Fusion and Fusion Pore Expansion. Journal of Virology, 2011, 85, 12492-12504.	3.4	30
31	Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins. BMC Biotechnology, 2010, 10, 50.	3.3	46
32	Baculovirus GP64 Disulfide Bonds: the Intermolecular Disulfide Bond of <i>Autographa californica</i> Multicapsid Nucleopolyhedrovirus GP64 Is Not Essential for Membrane Fusion and Virion Budding. Journal of Virology, 2010, 84, 8584-8595.	3.4	28
33	The Pre-Transmembrane Domain of the <i>Autographa californica</i> Multicapsid Nucleopolyhedrovirus GP64 Protein Is Critical for Membrane Fusion and Virus Infectivity. Journal of Virology, 2009, 83, 10993-11004.	3.4	19
34	The <i>Autographa californica</i> Multicapsid Nucleopolyhedrovirus GP64 Protein: Analysis of Transmembrane Domain Length and Sequence Requirements. Journal of Virology, 2009, 83, 4447-4461.	3.4	20
35	Display of Heterologous Proteins on gp64null Baculovirus Virions and Enhanced Budding Mediated by a Vesicular Stomatitis Virus G-Stem Construct. Journal of Virology, 2008, 82, 1368-1377.	3.4	30
36	Functional Analysis of the Transmembrane (TM) Domain of the <i>Autographa californica</i> Multicapsid Nucleopolyhedrovirus GP64 Protein: Substitution of Heterologous TM Domains. Journal of Virology, 2008, 82, 3329-3341.	3.4	30

GARY W BLISSARD

#	Article	IF	CITATIONS
37	Identification of a GP64 Subdomain Involved in Receptor Binding by Budded Virions of the Baculovirus <i>Autographica californica</i> Multicapsid Nucleopolyhedrovirus. Journal of Virology, 2008, 82, 4449-4460.	3.4	61
38	The AcMNPV pp31 gene is not essential for productive AcMNPV replication or late gene transcription but appears to increase levels of most viral transcripts. Virology, 2007, 365, 34-47.	2.4	34
39	Mapping the conformational epitope of a neutralizing antibody (AcV1) directed against the AcMNPV GP64 protein. Virology, 2006, 352, 427-437.	2.4	45
40	A Cellular Drosophila melanogaster Protein with Similarity to Baculovirus F Envelope Fusion Proteins. Journal of Virology, 2005, 79, 7979-7989.	3.4	15
41	Persistent Gene Expression in Mouse Nasal Epithelia following Feline Immunodeficiency Virus-Based Vector Gene Transfer. Journal of Virology, 2005, 79, 12818-12827.	3.4	98
42	Ac23, an Envelope Fusion Protein Homolog in the Baculovirus Autographa californica Multicapsid Nucleopolyhedrovirus, Is a Viral Pathogenicity Factor. Journal of Virology, 2003, 77, 328-339.	3.4	84
43	Palmitoylation of the Autographa californica Multicapsid Nucleopolyhedrovirus Envelope Clycoprotein GP64: Mapping, Functional Studies, and Lipid Rafts. Journal of Virology, 2003, 77, 6265-6273.	3.4	29
44	Analysis of an <i>Autographa californica</i> Nucleopolyhedrovirus <i>lef-11</i> Knockout: LEF-11 Is Essential for Viral DNA Replication. Journal of Virology, 2002, 76, 2770-2779.	3.4	82
45	Pseudotyping Autographa californica Multicapsid Nucleopolyhedrovirus (AcMNPV): F Proteins from Group II NPVs Are Functionally Analogous to AcMNPV GP64. Journal of Virology, 2002, 76, 5729-5736.	3.4	109
46	Analysis of an <i>Autographa californica</i> Multicapsid Nucleopolyhedrovirus <i>lef-6</i> -Null Virus: LEF-6 Is Not Essential for Viral Replication but Appears To Accelerate Late Gene Transcription. Journal of Virology, 2002, 76, 5503-5514.	3.4	49
47	Stable cell lines expressing baculovirus P35: Resistance to apoptosis and nutrient stress, and increased glycoprotein secretion. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 293-302.	1.5	27
48	STABLE CELL LINES EXPRESSING BACULOVIRUS P35: RESISTANCE TO APOPTOSIS AND NUTRIENT STRESS, AND INCREASED GLYCOPROTEIN SECRETION. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 293.	1.5	8
49	Expression and localization of LEF-11 in Autographa californica nucleopolyhedrovirus-infected Sf9 cells. Journal of General Virology, 2001, 82, 2289-2294.	2.9	14
50	A Novel Baculovirus Envelope Fusion Protein with a Proprotein Convertase Cleavage Site. Virology, 2000, 275, 30-41.	2.4	116
51	A Discrete Stage of Baculovirus GP64-mediated Membrane Fusion. Molecular Biology of the Cell, 1999, 10, 4191-4200.	2.1	49
52	Modulation of Translational Efficiency by Contextual Nucleotides Flanking a Baculovirus Initiator AUG Codon. Virology, 1999, 259, 369-383.	2.4	28
53	An Analysis of the Role of the Target Membrane on the Gp64-induced Fusion Pore. Virology, 1999, 253, 65-76.	2.4	51
54	Production and characterization of the Brassica oleracea self-incompatibility locus glycoprotein and receptor kinase in a baculovirus infected insect cell culture system. Sexual Plant Reproduction, 1999, 12, 179-187.	2.2	11

GARY W BLISSARD

#	Article	IF	CITATIONS
55	Late Promoter Selection in the Baculovirusgp64 Envelope Fusion ProteinGene. Virology, 1997, 231, 167-181.	2.4	37
56	Baculovirus-insect cell interactions. Cytotechnology, 1996, 20, 73-93.	1.6	116
57	Baculovirus-insect cell interactions. Current Applications of Cell Culture Engineering, 1996, , 73-93.	0.1	2
58	A synthetic early promoter from a baculovirus: Roles of the TATA box and conserved start site CAGT sequence in basal levels of transcription. Virology, 1992, 190, 783-793.	2.4	84
59	Segment W of Campoletis sonorensis virus: Expression, gene products, and organization. Virology, 1989, 169, 78-89.	2.4	65
60	Identification, Mapping, and In Vitro Translation of <i>Campoletis sonorensis</i> Virus mRNAs from Parasitized <i>Heliothis virescens</i> Larvae. Journal of Virology, 1986, 57, 318-327.	3.4	70
61	Expression of Campoletis sonorensis Virus in the Parasitized Host, Heliothis virescens. Journal of Virology, 1983, 48, 74-78.	3.4	82