Christof von Kalle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2022342/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Serious Adverse Event after Successful Gene Therapy for X-Linked Severe Combined Immunodeficiency. New England Journal of Medicine, 2003, 348, 255-256.	27.0	1,732
2	Hematopoietic Stem Cell Gene Therapy with a Lentiviral Vector in X-Linked Adrenoleukodystrophy. Science, 2009, 326, 818-823.	12.6	1,368
3	Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell, 2020, 182, 1419-1440.e23.	28.9	1,162
4	Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nature Medicine, 2006, 12, 401-409.	30.7	1,129
5	Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. Journal of Clinical Investigation, 2008, 118, 3143-3150.	8.2	1,069
6	Lentiviral Hematopoietic Stem Cell Gene Therapy Benefits Metachromatic Leukodystrophy. Science, 2013, 341, 1233158.	12.6	998
7	Lentiviral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-Aldrich Syndrome. Science, 2013, 341, 1233151.	12.6	900
8	COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nature Biotechnology, 2020, 38, 970-979.	17.5	887
9	Dissecting the genomic complexity underlying medulloblastoma. Nature, 2012, 488, 100-105.	27.8	765
10	Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nature Medicine, 2010, 16, 198-204.	30.7	727
11	Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 2013, 45, 927-932.	21.4	674
12	Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nature Biotechnology, 2006, 24, 687-696.	17.5	648
13	Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet, The, 2004, 364, 2181-2187.	13.7	636
14	Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition. Cancer Cell, 2014, 25, 393-405.	16.8	627
15	Murine Leukemia Induced by Retroviral Gene Marking. Science, 2002, 296, 497-497.	12.6	584
16	Gene Therapy in Patients with Transfusion-Dependent Î ² -Thalassemia. New England Journal of Medicine, 2018, 378, 1479-1493.	27.0	525
17	Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 2014, 511, 428-434.	27.8	520
18	Stem-Cell Gene Therapy for the Wiskott–Aldrich Syndrome. New England Journal of Medicine, 2010, 363, 1918-1927.	27.0	505

#	Article	IF	CITATIONS
19	An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nature Biotechnology, 2011, 29, 816-823.	17.5	488
20	The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. Journal of Clinical Investigation, 2009, 119, 964-975.	8.2	488
21	Gene Therapy for Wiskott-Aldrich Syndrome—Long-Term Efficacy and Genotoxicity. Science Translational Medicine, 2014, 6, 227ra33.	12.4	460
22	Effective gene therapy with nonintegrating lentiviral vectors. Nature Medicine, 2006, 12, 348-353.	30.7	416
23	Side effects of retroviral gene transfer into hematopoietic stem cells. Blood, 2003, 101, 2099-2113.	1.4	399
24	Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature, 2014, 510, 537-541.	27.8	378
25	Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood, 2006, 108, 2545-2553.	1.4	308
26	Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer, 2019, 113, 47-54.	2.8	300
27	Integrative Genomic Analyses Reveal an Androgen-Driven Somatic Alteration Landscape in Early-Onset Prostate Cancer. Cancer Cell, 2013, 23, 159-170.	16.8	292
28	High-resolution insertion-site analysis by linear amplification–mediated PCR (LAM-PCR). Nature Methods, 2007, 4, 1051-1057.	19.0	281
29	Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study. Lancet Respiratory Medicine,the, 2021, 9, 1255-1265.	10.7	279
30	Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review. Journal of Medical Internet Research, 2018, 20, e11936.	4.3	277
31	Distinct Types of Tumor-Initiating Cells Form Human Colon Cancer Tumors and Metastases. Cell Stem Cell, 2011, 9, 357-365.	11.1	276
32	Therapeutic gene causing lymphoma. Nature, 2006, 440, 1123-1123.	27.8	263
33	Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nature Medicine, 2009, 15, 285-292.	30.7	259
34	CTLA-4 and PD-L1 Checkpoint Blockade Enhances Oncolytic Measles Virus Therapy. Molecular Therapy, 2014, 22, 1949-1959.	8.2	249
35	Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood, 2007, 110, 1770-1778.	1.4	248
36	Distinct Genomic Integration of MLV and SIV Vectors in Primate Hematopoietic Stem and Progenitor Cells. PLoS Biology, 2004, 2, e423.	5.6	243

#	Article	IF	CITATIONS
37	A Hybrid Vector for Ligand-Directed Tumor Targeting and Molecular Imaging. Cell, 2006, 125, 385-398.	28.9	242
38	BRAF Inhibition in Refractory Hairy-Cell Leukemia. New England Journal of Medicine, 2012, 366, 2038-2040.	27.0	240
39	TALEN-based Gene Correction for Epidermolysis Bullosa. Molecular Therapy, 2013, 21, 1151-1159.	8.2	232
40	Oncogenesis Following Delivery of a Nonprimate Lentiviral Gene Therapy Vector to Fetal and Neonatal Mice. Molecular Therapy, 2005, 12, 763-771.	8.2	224
41	Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. Journal of Clinical Investigation, 2007, 117, 2225-2232.	8.2	221
42	Polyclonal long-term repopulating stem cell clones in a primate model. Blood, 2002, 100, 2737-2743.	1.4	219
43	Adeno-Associated Virus Vector Genomes Persist as Episomal Chromatin in Primate Muscle. Journal of Virology, 2008, 82, 7875-7885.	3.4	213
44	Deep neural networks are superior to dermatologists in melanoma image classification. European Journal of Cancer, 2019, 119, 11-17.	2.8	212
45	Chance or necessity? Insertional Mutagenesis in Gene Therapy and Its Consequences. Molecular Therapy, 2004, 9, 5-13.	8.2	211
46	Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood, 2011, 117, 5332-5339.	1.4	201
47	Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nature Communications, 2018, 9, 144.	12.8	197
48	Superior skin cancer classification by the combination of human and artificial intelligence. European Journal of Cancer, 2019, 120, 114-121.	2.8	197
49	A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer, 2019, 111, 148-154.	2.8	197
50	Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell, 2018, 34, 996-1011.e8.	16.8	190
51	<i>NRG1</i> Fusions in <i>KRAS</i> Wild-Type Pancreatic Cancer. Cancer Discovery, 2018, 8, 1087-1095.	9.4	189
52	Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood, 2003, 101, 1284-1289.	1.4	188
53	Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. European Journal of Cancer, 2019, 118, 91-96.	2.8	188
54	InÂVivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases. Cell Stem Cell, 2016, 19, 107-119.	11.1	187

#	Article	IF	CITATIONS
55	Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. Journal of Clinical Investigation, 2007, 117, 2241-2249.	8.2	185
56	Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood, 2005, 105, 4235-4246.	1.4	178
57	Comprehensive genomic access to vector integration in clinical gene therapy. Nature Medicine, 2009, 15, 1431-1436.	30.7	173
58	Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases. Molecular Therapy, 2016, 24, 570-581.	8.2	168
59	Bone marrow-derived cells contribute to infarct remodelling. Cardiovascular Research, 2006, 71, 661-671.	3.8	167
60	Stem Cell Collection and Gene Transfer in Fanconi Anemia. Molecular Therapy, 2007, 15, 211-219.	8.2	166
61	Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nature Protocols, 2010, 5, 1379-1395.	12.0	161
62	Pathologist-level classification of histopathological melanoma images with deep neural networks. European Journal of Cancer, 2019, 115, 79-83.	2.8	156
63	Detection and Direct Genomic Sequencing of Multiple Rare Unknown Flanking DNA in Highly Complex Samples. Human Gene Therapy, 2001, 12, 743-749.	2.7	151
64	A largely random AAV integration profile after LPLD gene therapy. Nature Medicine, 2013, 19, 889-891.	30.7	150
65	Uncovering and Dissecting the Genotoxicity of Self-inactivating Lentiviral Vectors In Vivo. Molecular Therapy, 2014, 22, 774-785.	8.2	142
66	Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nature Medicine, 2003, 9, 463-468.	30.7	134
67	Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. European Journal of Cancer, 2019, 119, 57-65.	2.8	134
68	Precision oncology based on omics data: The NCT Heidelberg experience. International Journal of Cancer, 2017, 141, 877-886.	5.1	133
69	Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque. Blood, 2006, 107, 3865-3867.	1.4	129
70	Failure of SCID-X1 gene therapy in older patients. Blood, 2005, 105, 4255-4257.	1.4	128
71	Comprehensive Genomic and Transcriptomic Analysis for Guiding Therapeutic Decisions in Patients with Rare Cancers. Cancer Discovery, 2021, 11, 2780-2795.	9.4	125
72	A time-resolved proteomic and prognostic map of COVID-19. Cell Systems, 2021, 12, 780-794.e7.	6.2	125

#	Article	IF	CITATIONS
73	Drug-perturbation-based stratification of blood cancer. Journal of Clinical Investigation, 2017, 128, 427-445.	8.2	124
74	Hepatocyteâ€ŧargeted expression by integraseâ€defective lentiviral vectors induces antigenâ€specific tolerance in mice with low genotoxic risk. Hepatology, 2011, 53, 1696-1707.	7.3	123
75	High-resolution analysis of the human T-cell receptor repertoire. Nature Communications, 2015, 6, 8081.	12.8	123
76	Comparison of Three Retroviral Vector Systems for Transduction of Nonobese Diabetic/Severe Combined Immunodeficiency Mice Repopulating Human CD34+Cord Blood Cells. Human Gene Therapy, 2003, 14, 509-519.	2.7	118
77	Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts. European Journal of Cancer, 2021, 156, 202-216.	2.8	115
78	Methylguanine methyltransferase–mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model. Journal of Clinical Investigation, 2003, 112, 1581-1588.	8.2	109
79	Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark. European Journal of Cancer, 2019, 111, 30-37.	2.8	104
80	Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory. Science Translational Medicine, 2015, 7, 317ra198.	12.4	102
81	Lentiviral Hematopoietic Cell Gene Therapy for X-Linked Adrenoleukodystrophy. Methods in Enzymology, 2012, 507, 187-198.	1.0	100
82	BRAF inhibition in hairy cell leukemia with low-dose vemurafenib. Blood, 2016, 127, 2847-2855.	1.4	100
83	Thymus-autonomous T cell development in the absence of progenitor import. Journal of Experimental Medicine, 2012, 209, 1409-1417.	8.5	99
84	Artificial riboswitches for gene expression and replication control of DNA and RNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E554-62.	7.1	98
85	Lentiviral vectors pseudotyped with murine ecotropic envelope: Increased biosafety and convenience in preclinical research. Experimental Hematology, 2006, 34, 588-592.	0.4	96
86	Integration profile of retroviral vector in gene therapy treated patients is cellâ€ s pecific according to gene expression and chromatin conformation of target cell. EMBO Molecular Medicine, 2011, 3, 89-101.	6.9	95
87	Retroviral Gene Therapy for X-linked Chronic Granulomatous Disease: Results From Phase I/II Trial. Molecular Therapy, 2011, 19, 2092-2101.	8.2	95
88	Long-Term Clinical and Molecular Follow-up of Large Animals Receiving Retrovirally Transduced Stem and Progenitor Cells: No Progression to Clonal Hematopoiesis or Leukemia. Molecular Therapy, 2004, 9, 389-395.	8.2	94
89	Preclinical Evaluation of Efficacy and Safety of an Improved Lentiviral Vector for the Treatment of & & amp;#946;-Thalassemia and Sickle Cell Disease. Current Gene Therapy, 2014, 15, 64-81.	2.0	94
90	Fanconi Anemia Gene Editing by the CRISPR/Cas9 System. Human Gene Therapy, 2015, 26, 114-126.	2.7	94

#	Article	IF	CITATIONS
91	Recurrent CDKN1B (p27) mutations in hairy cell leukemia. Blood, 2015, 126, 1005-1008.	1.4	88
92	Targeted BiTE Expression by an Oncolytic Vector Augments Therapeutic Efficacy Against Solid Tumors. Clinical Cancer Research, 2018, 24, 2128-2137.	7.0	88
93	MicroRNA-sensitive Oncolytic Measles Viruses for Cancer-specific Vector Tropism. Molecular Therapy, 2011, 19, 1097-1106.	8.2	87
94	Extensive Methylation of Promoter Sequences Silences Lentiviral Transgene Expression During Stem Cell Differentiation In Vivo. Molecular Therapy, 2012, 20, 1014-1021.	8.2	87
95	Genome-wide mapping of foamy virus vector integrations into a human cell line. Journal of General Virology, 2006, 87, 1339-1347.	2.9	87
96	Lentiviral vector–based insertional mutagenesis identifies genes associated with liver cancer. Nature Methods, 2013, 10, 155-161.	19.0	86
97	Granulocyte-Macrophage Colony-Stimulating Factor-Armed Oncolytic Measles Virus Is an Effective Therapeutic Cancer Vaccine. Human Gene Therapy, 2013, 24, 644-654.	2.7	83
98	Integration Frequency and Intermolecular Recombination of rAAV Vectors in Non-human Primate Skeletal Muscle and Liver. Molecular Therapy, 2012, 20, 1177-1186.	8.2	79
99	Studying the pathophysiology of coronavirus disease 2019: a protocol for the Berlin prospective COVID-19 patient cohort (Pa-COVID-19). Infection, 2020, 48, 619-626.	4.7	79
100	Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34+ cells. Molecular Therapy, 2005, 12, 77-86.	8.2	77
101	Clonal evidence for the transduction of CD34+ cells with lymphomyeloid differentiation potential and self-renewal capacity in the SCID-X1 gene therapy trial. Blood, 2005, 105, 2699-2706.	1.4	75
102	Pharmacologically regulated in vivo selection in a large animal. Blood, 2002, 100, 2026-2031.	1.4	72
103	Preclinical Safety and Efficacy of Human CD34+ Cells Transduced With Lentiviral Vector for the Treatment of Wiskott-Aldrich Syndrome. Molecular Therapy, 2013, 21, 175-184.	8.2	72
104	Shifting cancer care towards Multidisciplinarity: the cancer center certification program of the German cancer society. BMC Cancer, 2017, 17, 850.	2.6	68
105	Continued Response Off Treatment After BRAF Inhibition in Refractory Hairy Cell Leukemia. Journal of Clinical Oncology, 2013, 31, e300-e303.	1.6	67
106	Delayed Antibody and T-Cell Response to BNT162b2 Vaccination in the Elderly, Germany. Emerging Infectious Diseases, 2021, 27, 2174-2178.	4.3	67
107	Stable Human FIX Expression After 0.9G Intrauterine Gene Transfer of Self-complementary Adeno-associated Viral Vector 5 and 8 in Macaques. Molecular Therapy, 2011, 19, 1950-1960.	8.2	66
108	Defective homologous recombination DNA repair as therapeutic target in advanced chordoma. Nature Communications, 2019, 10, 1635.	12.8	64

#	Article	IF	CITATIONS
109	Impact of neo-adjuvant Sorafenib treatment on liver transplantation in HCC patients - a prospective, randomized, double-blind, phase III trial. BMC Cancer, 2015, 15, 392.	2.6	61
110	Oncolytic measles virus encoding interleukin-12 mediates potent antitumor effects through T cell activation. Oncolmmunology, 2017, 6, e1285992.	4.6	60
111	Ex vivo treatment of proliferating human cord blood stem cells with stroma-derived factor–1 enhances their ability to engraft NOD/SCID mice. Blood, 2002, 99, 3454-3457.	1.4	58
112	Mutations in ROGDI Cause Kohlschütter-Tönz Syndrome. American Journal of Human Genetics, 2012, 90, 701-707.	6.2	58
113	Integration of genomics and histology revises diagnosis and enables effective therapy of refractory cancer of unknown primary with <i>PDL1</i> amplification. Journal of Physical Education and Sports Management, 2016, 2, a001180.	1.2	57
114	Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification. European Journal of Cancer, 2021, 149, 94-101.	2.8	57
115	The German Corona Consensus Dataset (GECCO): a standardized dataset for COVID-19 research in university medicine and beyond. BMC Medical Informatics and Decision Making, 2020, 20, 341.	3.0	54
116	The influence of low molecular weight heparin medication on plasma DNA in pregnant women. Prenatal Diagnosis, 2015, 35, 1155-1157.	2.3	53
117	Cooperation of BRAFF595L and mutant HRAS in histiocytic sarcoma provides new insights into oncogenic BRAF signaling. Leukemia, 2016, 30, 937-946.	7.2	52
118	Lentiviral Vector Integration Profiles Differ in Rodent Postmitotic Tissues. Molecular Therapy, 2011, 19, 703-710.	8.2	51
119	Safety and Liver Transduction Efficacy of rAAV5- <i>cohPBGD</i> in Nonhuman Primates: A Potential Therapy for Acute Intermittent Porphyria. Human Gene Therapy, 2013, 24, 1007-1017.	2.7	50
120	Insertion Sites in Engrafted Cells Cluster Within a Limited Repertoire of Genomic Areas After Gammaretroviral Vector Gene Therapy. Molecular Therapy, 2011, 19, 2031-2039.	8.2	48
121	In Vivo Gene Transfer into Adult Stem Cells in Unconditioned Mice by in Situ Delivery of a Lentiviral Vector. Molecular Therapy, 2006, 14, 514-524.	8.2	46
122	Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting. Molecular Therapy, 2011, 19, 1193-1198.	8.2	45
123	Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study. Journal of Medical Internet Research, 2020, 22, e18091.	4.3	45
124	Teledermatology: Comparison of Store-and-Forward Versus Live Interactive Video Conferencing. Journal of Medical Internet Research, 2018, 20, e11871.	4.3	44
125	Bioinformatic Clonality Analysis of Next-Generation Sequencing-Derived Viral Vector Integration Sites. Human Gene Therapy Methods, 2012, 23, 111-118.	2.1	43
126	Integration-deficient Lentiviral Vectors Expressing Codon-optimized R338L Human FIX Restore Normal Hemostasis in Hemophilia B Mice. Molecular Therapy, 2014, 22, 567-574.	8.2	43

#	Article	IF	CITATIONS
127	Retroviral Vectors: Post Entry Events and Genomic Alterations. Viruses, 2011, 3, 429-455.	3.3	42
128	Targeted resequencing for analysis of clonal composition of recurrent gene mutations in chronic lymphocytic leukaemia. British Journal of Haematology, 2013, 163, 496-500.	2.5	42
129	Interim Results from a Phase 1/2 Clinical Study of Lentiglobin Gene Therapy for Severe Sickle Cell Disease. Blood, 2016, 128, 1176-1176.	1.4	42
130	Explainable artificial intelligenceÂin skin cancer recognition: A systematic review. European Journal of Cancer, 2022, 167, 54-69.	2.8	42
131	Retroviral vectors for gene therapy. Future Microbiology, 2010, 5, 1507-1523.	2.0	41
132	Long-Term Persistence of Canine Hematopoietic Cells Genetically Marked by Retrovirus Vectors. Human Gene Therapy, 1996, 7, 89-96.	2.7	40
133	Correction of Murine SCID-X1 by Lentiviral Gene Therapy Using a Codon-optimized IL2RG Gene and Minimal Pretransplant Conditioning. Molecular Therapy, 2011, 19, 1867-1877.	8.2	39
134	High-Definition Mapping of Retroviral Integration Sites Defines the Fate of Allogeneic T Cells After Donor Lymphocyte Infusion. PLoS ONE, 2010, 5, e15688.	2.5	39
135	Lentivirus-induced â€~Smart' dendritic cells: Pharmacodynamics and GMP-compliant production for immunotherapy against TRP2-positive melanoma. Gene Therapy, 2015, 22, 707-720.	4.5	37
136	Deep learning approach to predict lymph node metastasis directly from primary tumour histology in prostate cancer. BJU International, 2021, 128, 352-360.	2.5	37
137	Succession of transiently active tumorâ€initiating cell clones in human pancreatic cancer xenografts. EMBO Molecular Medicine, 2017, 9, 918-932.	6.9	36
138	Hidden Variables in Deep Learning Digital Pathology and Their Potential to Cause Batch Effects: Prediction Model Study. Journal of Medical Internet Research, 2021, 23, e23436.	4.3	36
139	Growth of hodgkin cell lines in severely combined immunodeficient mice. International Journal of Cancer, 1992, 52, 887-891.	5.1	34
140	Chemovirotherapy of Malignant Melanoma with a Targeted and Armed Oncolytic Measles Virus. Journal of Investigative Dermatology, 2013, 133, 1034-1042.	0.7	34
141	A benchmark for neural network robustness in skin cancer classification. European Journal of Cancer, 2021, 155, 191-199.	2.8	34
142	Efficient marking of human cells with rapid but transient repopulating activity in autografted recipients. Blood, 2005, 106, 893-898.	1.4	33
143	Mapping the precision of genome editing. Nature Biotechnology, 2015, 33, 150-152.	17.5	33
144	Prediction of melanoma evolution in melanocytic nevi via artificial intelligence: A call for prospective data. European Journal of Cancer, 2019, 119, 30-34.	2.8	33

#	Article	IF	CITATIONS
145	Lentivirus-mediated Reprogramming of Somatic Cells in the Absence of Transgenic Transcription Factors. Molecular Therapy, 2010, 18, 2139-2145.	8.2	32
146	Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification. Molecular Therapy - Methods and Clinical Development, 2017, 4, 213-224.	4.1	32
147	Robustness of convolutional neural networks in recognition of pigmented skin lesions. European Journal of Cancer, 2021, 145, 81-91.	2.8	32
148	Deep learning can predict lymph node status directly from histology in colorectal cancer. European Journal of Cancer, 2021, 157, 464-473.	2.8	32
149	Genetic marking as an approach to studying in vivo hematopoiesis: progress in the non-human primate model. Oncogene, 2002, 21, 3274-3283.	5.9	30
150	The Contained Self-Reactive Peripheral T Cell Repertoire: Size, Diversity, and Cellular Composition. Journal of Immunology, 2015, 195, 2067-2079.	0.8	30
151	Genetic subclone architecture of tumor clone-initiating cells in colorectal cancer. Journal of Experimental Medicine, 2017, 214, 2073-2088.	8.5	30
152	Mutant KIT as imatinib-sensitive target in metastatic sinonasal carcinoma. Annals of Oncology, 2017, 28, 142-148.	1.2	30
153	Targeting Fibroblast Growth Factor Receptor 1 for Treatment of Soft-Tissue Sarcoma. Clinical Cancer Research, 2017, 23, 962-973.	7.0	29
154	Real-Time Definition of Non-Randomness in the Distribution of Genomic Events. PLoS ONE, 2007, 2, e570.	2.5	29
155	A Skin Cancer Prevention Facial-Aging Mobile App for Secondary Schools in Brazil: Appearance-Focused Interventional Study. JMIR MHealth and UHealth, 2018, 6, e60.	3.7	29
156	Parallel assessment of globin lentiviral transfer in induced pluripotent stem cells and adult hematopoietic stem cells derived from the same transplanted β-thalassemia patient. Stem Cells, 2013, 31, 1785-1794.	3.2	28
157	Outcomes of Gene Therapy for Severe Sickle Disease and Beta-Thalassemia Major Via Transplantation of Autologous Hematopoietic Stem Cells Transduced Ex Vivo with a Lentiviral Beta AT87Q-Globin Vector. Blood, 2015, 126, 202-202.	1.4	28
158	Enhanced Control of Oncolytic Measles Virus Using MicroRNA Target Sites. Molecular Therapy - Oncolytics, 2018, 9, 30-40.	4.4	27
159	Clinical and virological characteristics of hospitalised COVID-19 patients in a German tertiary care centre during the first wave of the SARS-CoV-2 pandemic: a prospective observational study. Infection, 2021, 49, 703-714.	4.7	27
160	Patient-derived xenografts of gastrointestinal cancers are susceptible to rapid and delayed B-lymphoproliferation. International Journal of Cancer, 2017, 140, 1356-1363.	5.1	26
161	Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions. PLoS ONE, 2019, 14, e0218713.	2.5	26
162	Common clonal origin of conventional T cells and induced regulatory T cells in breast cancer patients. Nature Communications, 2021, 12, 1119.	12.8	26

#	Article	IF	CITATIONS
163	Efficient Serum-Free Retroviral Gene Transfer into Primitive Human Hematopoietic Progenitor Cells by a Defined, High-Titer, Nonconcentrated Vector-Containing Medium. Human Gene Therapy, 1998, 9, 771-778.	2.7	25
164	A Model for the Detection of Clonality in Marked Hematopoietic Stem Cells. Annals of the New York Academy of Sciences, 2001, 938, 146-156.	3.8	25
165	Importance of Murine Study Design for Testing Toxicity of Retroviral Vectors in Support of Phase I Trials. Molecular Therapy, 2007, 15, 782-791.	8.2	25
166	TCR sequences and tissue distribution discriminate the subsets of naÃ⁻ve and activated/memory Treg cells in mice. European Journal of Immunology, 2015, 45, 1524-1534.	2.9	25
167	Molecular evidence of lentiviral vector-mediated gene transfer into human self-renewing, multi-potent, long-term NOD/SCID repopulating hematopoietic cells. Molecular Therapy, 2002, 6, 615-26.	8.2	25
168	Integration of retroviral vectors. Current Opinion in Immunology, 2012, 24, 592-597.	5.5	24
169	Long-term health sequelae and quality of life at least 6Âmonths after infection with SARS-CoV-2: design and rationale of the COVIDOM-study as part of the NAPKON population-based cohort platform (POP). Infection, 2021, 49, 1277-1287.	4.7	24
170	Efficient Gene Transfer in Primitive CD34 ⁺ /CD38 ^{lo} Human Bone Marrow Cells Reselected after Long-Term Exposure to GALV-Pseudotyped Retroviral Vector. Human Gene Therapy, 1997, 8, 2079-2086.	2.7	23
171	Low-dose total body irradiation causes clonal fluctuation of primate hematopoietic stem and progenitor cells. Blood, 2005, 105, 1010-1015.	1.4	23
172	Ultramicroscopy as a novel tool to unravel the tropism of AAV gene therapy vectors in the brain. Scientific Reports, 2016, 6, 28272.	3.3	23
173	Overdiagnosis of melanoma – causes, consequences and solutions. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1236-1243.	0.8	23
174	Lentiviral-Mediated Gene Therapy in Fanconi Anemia-A Mice Reveals Long-Term Engraftment and Continuous Turnover of Corrected HSCs. Current Gene Therapy, 2015, 15, 550-562.	2.0	23
175	Vector Integration and Tumorigenesis. Human Gene Therapy, 2014, 25, 475-481.	2.7	22
176	Engineered dendritic cells from cord blood and adult blood accelerate effector T cell immune reconstitution against HCMV. Molecular Therapy - Methods and Clinical Development, 2015, 2, 14060.	4.1	22
177	From Bench to Bedside: Preclinical Evaluation of a Self-Inactivating Gammaretroviral Vector for the Gene Therapy of X-linked Chronic Granulomatous Disease. Human Gene Therapy Clinical Development, 2013, 24, 86-98.	3.1	21
178	The Fetal Mouse Is a Sensitive Genotoxicity Model That Exposes Lentiviral-associated Mutagenesis Resulting in Liver Oncogenesis. Molecular Therapy, 2013, 21, 324-337.	8.2	21
179	Gene therapy for Wiskott-Aldrich Syndrome—Long-term reconstitution and clinical benefits, but increased risk for leukemogenesis. Rare Diseases (Austin, Tex), 2014, 2, e947749.	1.8	21
180	GENE-IS: Time-Efficient and Accurate Analysis of Viral Integration Events in Large-Scale Gene Therapy Data. Molecular Therapy - Nucleic Acids, 2017, 6, 133-139.	5.1	21

#	Article	IF	CITATIONS
181	Stable Polyclonal Murine Long-Term Hematopoiesis without Clonal Exhaustion of MGMT P140K Expressing Murine Hematopoietic Stem Cells after Extended Reduced Intensity Selection Blood, 2006, 108, 3271-3271.	1.4	21
182	Efficient Characterization of Retroâ€; Lentiâ€; and Foamyvectorâ€Transduced Cell Populations by Highâ€Accuracy Insertion Site Sequencing. Annals of the New York Academy of Sciences, 2003, 996, 112-121.	3.8	20
183	Validating Comprehensive Next-Generation Sequencing Results for Precision Oncology: The NCT/DKTK Molecularly Aided Stratification for Tumor Eradication Research Experience. JCO Precision Oncology, 2018, 2, 1-13.	3.0	20
184	New developments in hematopoietic stem cell expansion. Current Opinion in Hematology, 1998, 5, 79.	2.5	19
185	Analyzing the Number of Common Integration Sites of Viral Vectors – New Methods and Computer Programs. PLoS ONE, 2011, 6, e24247.	2.5	19
186	So rare we need to hunt for them: reframing the ethical debate on incidental findings. Genome Medicine, 2015, 7, 83.	8.2	19
187	Identification and characterization of a BRAF fusion oncoprotein with retained autoinhibitory domains. Oncogene, 2020, 39, 814-832.	5.9	19
188	A Face-Aging App for Smoking Cessation in a Waiting Room Setting: Pilot Study in an HIV Outpatient Clinic. Journal of Medical Internet Research, 2018, 20, e10976.	4.3	19
189	Transgenic Expression of Human Glial Cell Line-Derived Neurotrophic Factor from Integration-Deficient Lentiviral Vectors is Neuroprotective in a Rodent Model of Parkinson's Disease. Human Gene Therapy, 2014, 25, 631-641.	2.7	18
190	Clonal Inventory Screens Uncover Monoclonality Following Serial Transplantation ofMGMTP140K-Transduced Stem Cells and Dose-Intense Chemotherapy. Human Gene Therapy, 2011, 22, 697-710.	2.7	17
191	Update of Results from the Northstar Study (HGB-204): A Phase 1/2 Study of Gene Therapy for Beta-Thalassemia Major Via Transplantation of Autologous Hematopoietic Stem Cells Transduced Ex-Vivo with a Lentiviral Beta AT87Q-Globin Vector (LentiGlobin BB305 Drug Product). Blood, 2015, 126, 201-201.	1.4	17
192	Lentiglobin Gene Therapy for Transfusion-Dependent β-Thalassemia: Update from the Northstar Hgb-204 Phase 1/2 Clinical Study. Blood, 2016, 128, 1175-1175.	1.4	17
193	Generation of lentivirus-induced dendritic cells under GMP-compliant conditions for adaptive immune reconstitution against cytomegalovirus after stem cell transplantation. Journal of Translational Medicine, 2015, 13, 240.	4.4	16
194	Integrating proteomics into precision oncology. International Journal of Cancer, 2021, 148, 1438-1451.	5.1	15
195	Effect of chronic cytokine therapy on clonal dynamics in nonhuman primates. Blood, 2004, 103, 4070-4077.	1.4	14
196	Long-term Regulation of Genetically Modified Primary Hematopoietic Cells in Dogs. Molecular Therapy, 2011, 19, 1287-1294.	8.2	14
197	Mapping Active Gene-Regulatory Regions in Human Repopulating Long-Term HSCs. Cell Stem Cell, 2018, 23, 132-146.e9.	11.1	14
198	Is IL2RG oncogenic in T-cell development?: X-SCID transgene leukaemogenicity (reply). Nature, 2006, 443, E6-E7.	27.8	13

#	Article	IF	CITATIONS
199	MicroRNA-sensitive oncolytic measles virus for chemovirotherapy of pancreatic cancer. Molecular Therapy - Oncolytics, 2021, 21, 340-355.	4.4	13
200	Impact of dexamethasone on SARS-CoV-2 concentration kinetics and antibody response in hospitalized COVID-19 patients: results from a prospective observational study. Clinical Microbiology and Infection, 2021, 27, 1520.e7-1520.e10.	6.0	13
201	Gene therapy and bone marrow transplantation. Current Opinion in Oncology, 1995, 7, 107-114.	2.4	11
202	Stable Long-Term Blood Formation by Stem Cells in Murine Steady-State Hematopoiesis. Stem Cells, 2012, 30, 1961-1970.	3.2	11
203	Initial Results from Study Hgb-206: A Phase 1 Study Evaluating Gene Therapy By Transplantation of Autologous CD34+ Stem Cells Transduced Ex Vivo with the Lentiglobin BB305 Lentiviral Vector in Subjects with Severe Sickle Cell Disease. Blood, 2015, 126, 3233-3233.	1.4	11
204	You Can Count on This: Barcoded Hematopoietic Stem Cells. Cell Stem Cell, 2011, 9, 390-392.	11.1	10
205	Next-generation sequencing of cancer consensus genes in lymphoma. Leukemia and Lymphoma, 2013, 54, 1831-1835.	1.3	10
206	Linear Amplification Mediated PCR – Localization of Genetic Elements and Characterization of Unknown Flanking DNA. Journal of Visualized Experiments, 2014, , e51543.	0.3	10
207	Cell Cycle Status of CD34+ Hemopoietic Stem Cells Determines Lentiviral Integration in Actively Transcribed and Development-related Genes. Molecular Therapy, 2015, 23, 683-696.	8.2	10
208	Systematic comparative study of computational methods for T-cell receptor sequencing data analysis. Briefings in Bioinformatics, 2019, 20, 222-234.	6.5	10
209	Study Hgb-205: Outcomes of Gene Therapy for Hemoglobinopathies Via Transplantation of Autologous Hematopoietic Stem Cells Transduced Ex Vivo with a Lentiviral βÎ'-T87Q-Globin Vector (LentiGlobinA®) Tj ETQq1	1 0.7 8431	l4 rg BT /Ove
210	Initial Results from the Northstar Study (HGB-204): A Phase 1/2 Study of Gene Therapy for β-Thalassemia Major Via Transplantation of Autologous Hematopoietic Stem Cells Transduced Ex Vivo with a Lentiviral βÎ'-T87Q -Globin Vector (LentiGlobin BB305 Drug Product). Blood, 2014, 124, 549-549.	1.4	10
211	A Dermatologist's Ammunition in the War Against Smoking: A Photoaging App. Journal of Medical Internet Research, 2017, 19, e326.	4.3	10
212	Comparison Between Several Integrase-defective Lentiviral Vectors Reveals Increased Integration of an HIV Vector Bearing a D167H Mutant. Molecular Therapy - Nucleic Acids, 2014, 3, e213.	5.1	9
213	The balance between the intronic miR-342 and its host gene Evl determines hematopoietic cell fate decision. Leukemia, 2021, 35, 2948-2963.	7.2	9
214	High-throughput monitoring of integration site clonality in preclinical and clinical gene therapy studies. Molecular Therapy - Methods and Clinical Development, 2015, 2, 14061.	4.1	8
215	A Face-Aging Smoking Prevention/Cessation Intervention for Nursery School Students in Germany: An Appearance-Focused Interventional Study. International Journal of Environmental Research and Public Health, 2018, 15, 1656.	2.6	7
216	Hematopoietic Stem Cell Gene Therapy for Wiskott-Aldrich Syndrome Blood, 2007, 110, 502-502.	1.4	7

#	Article	IF	CITATIONS
217	Sustained Polyclonal Hematopoietic Repopulation after Successful SCID-X1 Gene Therapy by Means of a Non Random Integrating Pseudotyped Gammaretrovector Blood, 2004, 104, 290-290.	1.4	7
218	Gene Therapy Targeting Hematopoietic Cells: Better Not Leave It to Chance. Acta Haematologica, 2003, 110, 107-109.	1.4	6
219	Lentiviral Vector Promoter is Decisive for Aberrant Transcript Formation. Human Gene Therapy, 2017, 28, 875-885.	2.7	6
220	Sequencing of serially passaged measles virus affirms its genomic stability and reveals a nonrandom distribution of consensus mutations. Journal of General Virology, 2020, 101, 399-409.	2.9	6
221	Lenti in red: progress in gene therapy for human hemoglobinopathies. Journal of Clinical Investigation, 2004, 114, 889-891.	8.2	6
222	Analysis of the Clonal Repertoire of Gene-Corrected Cells in Gene Therapy. Methods in Enzymology, 2012, 507, 59-87.	1.0	5
223	Identification of NYâ€BRâ€1â€specific CD4 ⁺ T cell epitopes using HLAâ€transgenic mice. International Journal of Cancer, 2015, 136, 2588-2597.	5.1	5
224	279. Clinical Outcomes of Gene Therapy with BB305 Lentiviral Vector for Sickle Cell Disease and β-Thalassemia. Molecular Therapy, 2016, 24, S111-S112.	8.2	5
225	Gene Therapy for X-Linked Chronic Granulomatous Disease Blood, 2004, 104, 409-409.	1.4	5
226	Comprehensive genomic characterization of gene therapy-induced T-cell acute lymphoblastic leukemia. Leukemia, 2020, 34, 2785-2789.	7.2	4
227	Renewed Absence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infections in the Day Care Context in Berlin, January 2021. Clinical Infectious Diseases, 2021, 73, 1944-1945.	5.8	4
228	Long-Term Follow-Up of Serially Transplanted Mice Receiving Extended Reduced Intensity Selection of MGMT-P140K Expressing Murine Repopulating Stem Cells Demonstrates Stable Oligo- to Polyclonal Hematopoiesis without Clonal Exhaustion Blood, 2005, 106, 1286-1286.	1.4	4
229	Retrovirally transduced muscle-derived cells contribute to hematopoiesis at very low levels in the nonhuman primate model. Molecular Therapy, 2003, 8, 974-980.	8.2	3
230	Hematopoietic activity of human short-term repopulating cells in mobilized peripheral blood cell transplants is restricted to the first 5 months after transplantation. Blood, 2010, 115, 5023-5025.	1.4	3
231	Hematopoietic Stem Cell Gene Therapy Trial with Lentiviral Vector in X-Linked Adrenoleukodystrophy. Blood, 2008, 112, 821-821.	1.4	3
232	Facial-Aging Mobile Apps for Smoking Prevention in Secondary Schools in Brazil: Appearance-Focused Interventional Study. JMIR Public Health and Surveillance, 2018, 4, e10234.	2.6	3
233	Multiple Integration Events into Several Putative Oncogenes Was Required To Cause Leukemogenesis in Two Primate Recipients of RCR Contaminated Stem-Cells Blood, 2004, 104, 2102-2102.	1.4	3
234	Reply to: NGS library preparation may generate artifactual integration sites of AAV vectors. Nature Medicine, 2014, 20, 578-579.	30.7	2

#	Article	IF	CITATIONS
235	Inhibition of HIF1A Signaling by a Novel Class of Sulfonanilides for Targeted Treatment of Multiple Myeloma Blood, 2009, 114, 2856-2856.	1.4	2
236	Impaired Lentiviral Transgene Expression In Vivo Caused by Massive Methylation of SFFV Promoter Sequences Blood, 2010, 116, 3760-3760.	1.4	2
237	Hematopoietic Stem Cell Gene Therapy For Wiskott- Aldrich Syndrome. Blood, 2013, 122, 718-718.	1.4	2
238	Process Evaluation of a Medical Student–Delivered Smoking Prevention Program for Secondary Schools: Protocol for the Education Against Tobacco Cluster Randomized Trial. JMIR Research Protocols, 2019, 8, e13508.	1.0	2
239	Efficacy of Gene Therapy for Wiskott-Aldrich-Syndrome. Blood, 2011, 118, 165-165.	1.4	2
240	Cooperative Activity of BRAF F595L and Mutant HRAS in Histiocytic Sarcoma Provides New Insights into Oncogenic BRAF Signaling. Blood, 2015, 126, 1631-1631.	1.4	2
241	Das Nationale Centrum für Tumorerkrankungen Heidelberg. Visceral Medicine, 2006, 22, 237-241.	1.3	1
242	Between Minimal and Greater Than Minimal Risk: How Research Participants and Oncologists Assess Data-Sharing and the Risk of Re-identification in Genomic Research. Philosophy and Technology, 2019, 32, 39-55.	4.3	1
243	Long-Term Follow-Up of Patients Treated by Gene Therapy for X-Linked Chronic Granulomatous Disease Blood, 2005, 106, 194-194.	1.4	1
244	In Vivo Bone Marrow Stem Cell Gene Transfer in Mice by In Situ Delivery of a 3rd-Generation Lentiviral Vector Using Intrafemoral Injection Blood, 2004, 104, 2104-2104.	1.4	1
245	Long-Term Immunological Profile of Patients Treated with Haploidentical HSCT and TK-Cells to Study the Requirements of Memory T Cell Persistence. Blood, 2014, 124, 4793-4793.	1.4	1
246	Patient-Centered Mobile Health Data Management Solution for the German Health Care System (The) Tj ETQq0 (0 0 rgBT /0 2 . 4	Dverlock 10 T
247	723. In Vivo Expansion of MDS1/EVI1, PRDM16 and SETBP1 Integration Clones in Successful Chronic Granulomatous Disease (CGD) Gene Therapy Trial. Molecular Therapy, 2006, 13, S279.	8.2	0
248	733. Integration Site Distribution and Clonal Selection Related to the Insertion of Lentiviral SIN-Vectors. Molecular Therapy, 2006, 13, S283.	8.2	0
249	731. Hematopoietic Stem Cell Gene Transfer and Integration Site Analysis in Tumor-Prone Mice Uncovers Low Genotoxicity of Lentiviral Vector Integration. Molecular Therapy, 2006, 13, S282.	8.2	0
250	562. Modification of TCR Specificity by TALEN and CRISPR. Molecular Therapy, 2015, 23, S224-S225.	8.2	0
251	623. Immune Checkpoint Modulation Enhances Oncolytic Measles Virus Therapy. Molecular Therapy, 2015, 23, S247-S248.	8.2	0
252	626. Improving MicroRNA-Target-Site-Based Vector Control. Molecular Therapy, 2015, 23, S248-S249.	8.2	0

#	Article	IF	CITATIONS
253	121. T Cell Receptor Modification by Highly Specific TALEN and CRISPR/Cas9. Molecular Therapy, 2016, 24, S50.	8.2	0
254	134. Gene Editing Approaches for Investigating Therapy-Resistance in Soft-Tissue Sarcoma. Molecular Therapy, 2016, 24, S54-S55.	8.2	0
255	Gene and Cell Therapy in Germany. Human Gene Therapy, 2017, 28, 781-781.	2.7	Ο
256	Special Section: From Genes to Bedside and Back. International Journal of Cancer, 2017, 141, 866-866.	5.1	0
257	Aberrant Expression of LMO2, TAL1 (SCL) and T- RALDH2 in the T-Cell Clone of a Patient with T-ALL like Syndrome after Gene Therapy for X1-SCID Blood, 2004, 104, 1114-1114.	1.4	Ο
258	Persistence of eGFP Marked Bone Marrow Cells in Long-Term Hematopoiesis Blood, 2004, 104, 2111-2111.	1.4	0
259	RALDH2 Is Regulated by an LMO/SCL(TAL1) Associated Protein Complex in T Cell Acute Lymphoblastic Leukemia Blood, 2005, 106, 1225-1225.	1.4	0
260	Myeloid Expansion after Insertional Activation of MDS1/EVI1, PRDM16 and SETBP1 in a Successful Chronic Granulomatous Gene Therapy Trial Blood, 2005, 106, 198-198.	1.4	0
261	Insertional Activation of MDS1/EVI1, PRDM16 and SETBP1 in a Successful Chronic Granulomatous Disease (CGD) Gene Therapy Trial Blood, 2006, 108, 3274-3274.	1.4	0
262	T Cell Acute Lymphoblastic Leukemia Originates from a Differentiation Block in T Cell Development Due to Aberrant Expression of LMO2 and SCL(TAL1) Blood, 2006, 108, 2215-2215.	1.4	0
263	Modeling the Genotoxicity of Viral Vector Integration in a Tumor Prone Hematopoietic Stem Cell Transplantation Model Blood, 2006, 108, 451-451.	1.4	0
264	Non-Random Integration and Clone Selection by Lentiviral SIN-LTR Vectors Blood, 2006, 108, 3257-3257.	1.4	0
265	The Clonal Inventory of Gene Corrected Hematopoiesis in Three Successful Clinical Gene Therapy Trials. Blood, 2007, 110, 3733-3733.	1.4	0
266	Phase I/II Gene Therapy Study for Chronic Granulomatous Disease: Results, Lessons and Perspectives Blood, 2007, 110, 503-503.	1.4	0
267	Comprehensive and Unbiased Integration Site Analysis in Clinical Gene Therapy Blood, 2008, 112, 2351-2351.	1.4	0
268	Hematopoietic Activity of Human Short Term Repopulating Cells in Mobilized Peripheral Blood Cell Transplants Is Restricted to the First 5Months after Transplantation Blood, 2008, 112, 1386-1386.	1.4	0
269	Non-Random Lentiviral Vector Insertions in Bone Marrow Progenitors from Fanconi Anemia Patients. Blood, 2008, 112, 2358-2358.	1.4	0
270	Pre-Transplant Integration Site Diagnostics in Hematopoietic Stem Cell Gene Transfer Blood, 2009, 114, 3581-3581.	1.4	0

#	Article	IF	CITATIONS
271	In Vivo Lentiviral Marking Demonstrates Long-Term Myeloid and Lymphoid Lineage Contribution of Individual Hematopoietic Stem Cell Clones to Murine Steady-State Hematopoiesis Blood, 2009, 114, 813-813.	1.4	0
272	Uncovering Haematopoietic System Dynamics and Single Multipotent Progenitors Activity In Vivo In Humans by Retroviral Tagging Blood, 2010, 116, 2611-2611.	1.4	0
273	Deregulated EVI1 Expression Leads to Genomic Instability and G1 Cell Cycle Arrest. Blood, 2011, 118, 2431-2431.	1.4	0
274	Continued Response off Treatment After BRAF Inhibition in Refractory Hairy Cell Leukemia. Blood, 2012, 120, 4600-4600.	1.4	0
275	Overexpression of EVI1 Causes Genomic Instability and Cell Cycle Arrest in Hematopoietic Cells Blood, 2012, 120, 2398-2398.	1.4	0
276	Long-Term Immunological Profile and T Cell Dynamics In Patients Treated With Allogeneic Transplantation and TK-Cells For Hematological Malignancies. Blood, 2013, 122, 165-165.	1.4	0
277	Megatal, Crispr/Cas9, and Talen T-Cell Receptor Gene Editing. Blood, 2015, 126, 2045-2045.	1.4	0
278	Synergizing genome editing and cancer immunotherapy. Translational Cancer Research, 2017, 6, S969-S972.	1.0	0
279	The Influence of the Bone Marrow Niche on Drug Response Phenotypes of Blood Cancers. Blood, 2018, 132, 262-262.	1.4	0