
Michael D Jennions

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2022312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methods for testing publication bias in ecological and evolutionary metaâ€analyses. Methods in Ecology and Evolution, 2022, 13, 4-21.	5.2	106
2	Male alternative reproductive tactics and sperm competition: a metaâ€analysis. Biological Reviews, 2022, 97, 1365-1388.	10.4	13
3	A metaâ€analysis of sex differences in animal personality: no evidence for the greater male variability hypothesis. Biological Reviews, 2022, 97, 679-707.	10.4	31
4	Separating the effects of paternal age and mating history: Evidence for sexâ€specific paternal effect in eastern mosquitofish. Evolution; International Journal of Organic Evolution, 2022, 76, 1565-1577.	2.3	2
5	In the shadows: wildlife behaviour in tree plantations. Trends in Ecology and Evolution, 2022, 37, 838-850.	8.7	4
6	Sperm Competition Theory. , 2021, , 7865-7881.		0
7	Repeatability of lateralisation in mosquitofish Gambusia holbrooki despite evidence for turn alternation in detour tests. Animal Cognition, 2021, 24, 765-775.	1.8	8
8	The role of maternal effects on offspring performance in familiar and novel environments. Heredity, 2021, 127, 52-65.	2.6	3
9	Preferred reporting items for systematic reviews and metaâ€analyses in ecology and evolutionary biology: a <scp>PRISMA</scp> extension. Biological Reviews, 2021, 96, 1695-1722.	10.4	203
10	Quantifying the costs of pre- and postcopulatory traits for males: Evidence that costs of ejaculation are minor relative to mating effort. Evolution Letters, 2021, 5, 315-327.	3.3	15
11	Male age alone predicts paternity success under sperm competition when effects of age and past mating effort are experimentally separated. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210979.	2.6	10
12	No room for males in caves: Femaleâ€biased sex ratio in subterranean amphipods of the genus <i>Niphargus</i> . Journal of Evolutionary Biology, 2021, 34, 1653-1661.	1.7	3
13	Disentangling the effects of male age and mating history: Contrasting effects of mating history on precopulatory mating behavior and paternity success. Evolution; International Journal of Organic Evolution, 2021, 75, 2867-2880.	2.3	6
14	An experimental test to separate the effects of male age and mating history on female mate choice. Behavioral Ecology, 2020, 31, 1353-1360.	2.2	14
15	Combined effects of rearing and testing temperatures on sperm traits. Journal of Evolutionary Biology, 2020, 33, 1715-1724.	1.7	7
16	Stress in the city: meta-analysis indicates no overall evidence for stress in urban vertebrates. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201754.	2.6	32
17	Shifts in Reproductive Investment in Response to Competitors Lower Male Reproductive Success. American Naturalist, 2020, 196, 355-368.	2.1	10
18	Fine-scale genital morphology affects male ejaculation success: an experimental test. Biology Letters, 2020, 16, 20200251.	2.3	6

#	Article	IF	CITATIONS
19	An experimental test of the role of male mating history on paternal effects in the livebearer fish <i>Gambusia holbrooki</i> . Biology Letters, 2020, 16, 20190945.	2.3	8
20	An experimental test for body sizeâ€dependent effects of male harassment and an elevated copulation rate on female lifetime fecundity and offspring performance. Journal of Evolutionary Biology, 2019, 32, 1262-1273.	1.7	11
21	Evidence that nonsignificant results are sometimes preferred: Reverse P-hacking or selective reporting?. PLoS Biology, 2019, 17, e3000127.	5.6	22
22	The strategic reference gene: an organismal theory of inclusive fitness. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190459.	2.6	14
23	Sexual selection, phenotypic plasticity and female reproductive output. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180184.	4.0	36
24	Sexual selection, body mass and molecular evolution interact to predict diversification in birds. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190172.	2.6	17
25	Disentangling the costs of male harassment and the benefits of polyandry for females. Behavioral Ecology, 2019, 30, 872-881.	2.2	7
26	No evidence that male sexual experience increases mating success in a coercive mating system. Animal Behaviour, 2019, 150, 201-208.	1.9	15
27	Variation in the condition-dependence of individual sexual traits in male eastern mosquitofish, Gambusia holbrooki. Behavioral Ecology, 2019, 30, 666-674.	2.2	8
28	Males can evolve lower resistance to sexually transmitted infections to infect their mates and thereby increase their own fitness. Evolutionary Ecology, 2019, 33, 149-172.	1.2	10
29	The effects of male age, sperm age and mating history on ejaculate senescence. Functional Ecology, 2019, 33, 1267-1279.	3.6	42
30	Novel ablation technique shows no sperm priming response by male eastern mosquitofish to cues of female availability. Behavioral Ecology and Sociobiology, 2019, 73, 1.	1.4	8
31	Robotic crabs reveal that female fiddler crabs are sensitive to changes in male display rate. Biology Letters, 2018, 14, 20170695.	2.3	14
32	Are females in good condition better able to cope with costly males?. Behavioral Ecology, 2018, 29, 876-884.	2.2	14
33	Maternal-by-environment but not genotype-by-environment interactions in a fish without parental care. Heredity, 2018, 120, 154-167.	2.6	18
34	Gender differences in individual variation in academic grades fail to fit expected patterns for STEM. Nature Communications, 2018, 9, 3777.	12.8	158
35	Does the winner–loser effect determine male mating success?. Biology Letters, 2018, 14, 20180195.	2.3	20
36	What happens to offspring when parents are inbred, old or had a poor start in life? Evidence for sexâ€specific parental effects. Journal of Evolutionary Biology, 2018, 31, 1138-1151.	1.7	6

#	Article	IF	CITATIONS
37	How to quantify (the response to) sexual selection on traits. Evolution; International Journal of Organic Evolution, 2018, 72, 1904-1917.	2.3	22
38	The fitness cost to females of exposure to males does not depend on water availability in seed beetles. Animal Behaviour, 2018, 142, 77-84.	1.9	10
39	Facultative adjustment of the offspring sex ratio and male attractiveness: a systematic review and meta-analysis. Biological Reviews, 2017, 92, 108-134.	10.4	80
40	Experimental evidence for sexual selection against inbred males. Journal of Animal Ecology, 2017, 86, 394-404.	2.8	21
41	Secondary compounds from exotic tree plantations change female mating preferences in the palmate newt (<i>Lissotriton helveticus</i>). Journal of Evolutionary Biology, 2017, 30, 1788-1795.	1.7	12
42	Leaf extracts from an exotic tree affect responses to chemical cues in the palmate newt, Lissotriton helveticus. Animal Behaviour, 2017, 127, 243-251.	1.9	9
43	Sex ratios. Current Biology, 2017, 27, R790-R792.	3.9	12
44	Why does inbreeding reduce male paternity? Effects on sexually selected traits. Evolution; International Journal of Organic Evolution, 2017, 71, 2728-2737.	2.3	16
45	Not all sex ratios are equal: the Fisher condition, parental care and sexual selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160312.	4.0	50
46	Sexual selection on male body size, genital length and heterozygosity: Consistency across habitats and social settings. Journal of Animal Ecology, 2017, 86, 1458-1468.	2.8	23
47	Multimodal communication in courting fiddler crabs reveals male performance capacities. Royal Society Open Science, 2017, 4, 161093.	2.4	30
48	Inbreeding depression does not increase after exposure to a stressful environment: a test using compensatory growth. BMC Evolutionary Biology, 2016, 16, 68.	3.2	10
49	Mate choice and the operational sex ratio: an experimental test with robotic crabs. Journal of Evolutionary Biology, 2016, 29, 1455-1461.	1.7	4
50	The evolution of sex roles in mate searching. Evolution; International Journal of Organic Evolution, 2016, 70, 617-624.	2.3	40
51	Condition-dependent trade-offs between sexual traits, body condition and immunity: the effect of novel habitats. BMC Evolutionary Biology, 2016, 16, 135.	3.2	10
52	Mate guarding and frequent copulation in birds: A meta-analysis of their relationship to paternity and male phenotype. Evolution; International Journal of Organic Evolution, 2016, 70, 2789-2808.	2.3	28
53	Artificial selection on male genitalia length alters female brain size. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161796.	2.6	17
54	Graphic illustration of a potential problem: a commentary on Morrissey (2016). Journal of Evolutionary Biology, 2016, 29, 1917-1918.	1.7	1

#	Article	IF	CITATIONS
55	Sexual selection: incorporating non-genetic inheritance. Current Opinion in Behavioral Sciences, 2016, 12, 129-137.	3.9	10
56	Coevolution of parental investment and sexually selected traits drives sex-role divergence. Nature Communications, 2016, 7, 12517.	12.8	110
57	Fitness consequences of artificial selection on relative male genital size. Nature Communications, 2016, 7, 11597.	12.8	33
58	Are sexually selected traits affected by a poor environment early in life?. BMC Evolutionary Biology, 2016, 16, 263.	3.2	30
59	Sperm Competition Theory. , 2016, , 1-16.		0
60	Sex-specific maternal effects in a viviparous fish. Biology Letters, 2015, 11, 20150472.	2.3	16
61	Predictors of male insemination success in the mosquitofish (<i>Gambusia holbrooki</i>). Ecology and Evolution, 2015, 5, 4999-5006.	1.9	30
62	Why pair? Evidence of aggregative mating in a socially monogamous marine fish (Siganus doliatus ,) Tj ETQq0	0 0 rgBT /C	overlock 10 Tf
63	Direct reciprocity stabilizes simultaneous hermaphroditism at high mating rates: A model of sex allocation with egg trading. Evolution; International Journal of Organic Evolution, 2015, 69, 2129-2139.	2.3	11
64	Evidence for inbreeding depression in a species with limited opportunity for maternal effects. Ecology and Evolution, 2015, 5, 1398-1404.	1.9	8
65	Maternal effects on offspring size and number in mosquitofish, <i>Gambusia holbrooki</i> . Ecology and Evolution, 2015, 5, 2945-2955.	1.9	7
66	Sex allocation, juvenile mortality and the costs imposed by offspring on parents and siblings. Journal of Evolutionary Biology, 2015, 28, 428-437.	1.7	12
67	The Extent and Consequences of P-Hacking in Science. PLoS Biology, 2015, 13, e1002106.	5.6	818
68	Describing mate choice in a biased world: comments on Edward and Dougherty & Shuker. Behavioral Ecology, 2015, 26, 320-321.	2.2	9
69	Male mate choice and insemination success under simultaneous versus sequential choice conditions. Animal Behaviour, 2015, 103, 99-105.	1.9	20
70	Mateâ€sampling costs and sexy sons. Journal of Evolutionary Biology, 2015, 28, 259-266.	1.7	22
71	Evidence of Experimental Bias in the Life Sciences: Why We Need Blind Data Recording. PLoS Biology, 2015, 13, e1002190.	5.6	170
72	Troubleshooting Public Data Archiving: Suggestions to Increase Participation. PLoS Biology, 2014, 12, e1001779.	5.6	91

#	Article	IF	CITATIONS
73	Sex differences in compensatory and catch-up growth in the mosquitofish Gambusia holbrooki. Evolutionary Ecology, 2014, 28, 687-706.	1.2	18
74	Male body size and condition affects sperm number and production rates in mosquitofish, <i><scp>G</scp>ambusia holbrooki</i> . Journal of Evolutionary Biology, 2014, 27, 2739-2744.	1.7	56
75	The effects of familiarity and mating experience on mate choice in mosquitofish, Gambusia holbrooki. Behavioral Ecology, 2014, 25, 1205-1211.	2.2	23
76	The Relationship between Sexual Selection and Sexual Conflict. Cold Spring Harbor Perspectives in Biology, 2014, 6, a017517-a017517.	5.5	64
77	The Economics of Egg Trading: Mating Rate, Sperm Competition and Positive Frequency-Dependence. Dynamic Games and Applications, 2014, 4, 379-390.	1.9	6
78	Local Gamete Competition Explains Sex Allocation and Fertilization Strategies in the Sea. American Naturalist, 2014, 184, E32-E49.	2.1	27
79	Mating systems. , 2014, , 42-58.		25
80	Immune Challenge and Pre- and Post-copulatory Female Choice in the Cricket Teleogryllus commodus. Journal of Insect Behavior, 2013, 26, 176-190.	0.7	11
81	Weapons or mating signals? Claw shape and mate choice in a fiddler crab. Behavioral Ecology and Sociobiology, 2013, 67, 1163-1167.	1.4	19
82	Intraspecific Sexual Size and Shape Dimorphism in an Australian Freshwater Fish Differs with Respect to a Biogeographic Barrier and Latitude. Evolutionary Biology, 2013, 40, 408-419.	1.1	19
83	The effect of competitors on calling effort and life span in male field crickets. Behavioral Ecology, 2013, 24, 1251-1259.	2.2	27
84	Density dependence and fighting in species with indeterminate growth: a test in a fiddler crab. Animal Behaviour, 2013, 85, 1367-1376.	1.9	9
85	Causality and sex roles: prejudice against patterns? A reply to Ah-King. Trends in Ecology and Evolution, 2013, 28, 2-4.	8.7	20
86	Adaptive sex allocation in anticipation of changes in offspring mating opportunities. Nature Communications, 2013, 4, 1603.	12.8	42
87	Penis size interacts with body shape and height to influence male attractiveness. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6925-6930.	7.1	88
88	Limited plasticity in the phenotypic varianceâ€covariance matrix for male advertisement calls in the black field cricket, <i>Teleogryllus commodus</i> . Journal of Evolutionary Biology, 2013, 26, 1060-1078.	1.7	24
89	Increased behavioural lateralization in parasitized coral reef fish. Behavioral Ecology and Sociobiology, 2013, 67, 1339-1344.	1.4	20
90	Do male secondary sexual characters signal ejaculate quality? A metaâ€analysis. Biological Reviews, 2013, 88, 669-682.	10.4	91

#	Article	IF	CITATIONS
91	Competitor size, male mating success and mate choice in eastern mosquitofish, Gambusia holbrooki. Animal Behaviour, 2013, 85, 371-375.	1.9	20
92	Fees could damage public data archives. Nature, 2013, 502, 171-171.	27.8	6
93	2. The Procedure of Meta-analysis in a Nutshell. , 2013, , 14-24.		11
94	14. Publication and Related Biases. , 2013, , 207-236.		78
95	15. Temporal Trends in Effect Sizes: Causes, Detection, and Implications. , 2013, , 237-254.		26
96	16. Statistical Models for the Meta-analysis of Nonindependent Data. , 2013, , 255-283.		20
97	Strategic male courtship effort varies in concert with adaptive shifts in female mating preferences. Behavioral Ecology, 2013, 24, 906-913.	2.2	35
98	Experimental evidence that immediate neighbors affect male attractiveness. Behavioral Ecology, 2013, 24, 730-733.	2.2	22
99	Does male reproductive effort increase with age? Courtship in fiddler crabs. Biology Letters, 2013, 9, 20121078.	2.3	12
100	Publication and Related Biases. , 2013, , .		48
101	Statistical Models for the Meta-analysis of Nonindependent Data. , 2013, , .		26
102	Using Meta-analysis to Test Ecological and Evolutionary Theory. , 2013, , .		1
103	The Procedure of Meta-analysis in a Nutshell. , 2013, , .		1
104	Statistical Models and Approaches to Inference. , 2013, , .		28
105	Role of Meta-analysis in Interpreting the Scientific Literature. , 2013, , .		19
106	Context-dependent male mate choice: the effects of competitor presence and competitor size. Behavioral Ecology, 2012, 23, 355-360.	2.2	29
107	Keeping up appearances: male fiddler crabs wave faster in a crowd. Biology Letters, 2012, 8, 176-178.	2.3	23
108	Do females preferentially associate with males given a better start in life?. Biology Letters, 2012, 8, 362-364.	2.3	28

#	Article	IF	CITATIONS
109	The effects of neighbor familiarity and size on cooperative defense of fiddler crab territories. Behavioral Ecology, 2012, 23, 285-289.	2.2	7
110	Unifying cornerstones of sexual selection: operational sex ratio, Bateman gradient and the scope for competitive investment. Ecology Letters, 2012, 15, 1340-1351.	6.4	155
111	The many costs of sex. Trends in Ecology and Evolution, 2012, 27, 172-178.	8.7	268
112	Meta-analysis and sexual selection: past studies and future possibilities. Evolutionary Ecology, 2012, 26, 1119-1151.	1.2	32
113	A farewell to arms: males with regenerated claws fight harder over resources. Animal Behaviour, 2012, 84, 619-622.	1.9	11
114	Sexual Signaling and Immune Function in the Black Field Cricket Teleogryllus commodus. PLoS ONE, 2012, 7, e39631.	2.5	9
115	Estimating genetic benefits of polyandry from experimental studies: a metaâ€analysis. Biological Reviews, 2012, 87, 1-33.	10.4	229
116	The opportunity to be misled in studies of sexual selection. Journal of Evolutionary Biology, 2012, 25, 591-598.	1.7	74
117	Polyandry occurs because females initially trade sex for protection. Animal Behaviour, 2012, 83, 1203-1206.	1.9	27
118	The effect of claw size and wave rate on female choice in a fiddler crab. Journal of Ethology, 2012, 30, 151-155.	0.8	41
119	Twenty-five new polymorphic microsatellites for the eastern mosquitofish, Gambusia holbrooki (Actinopterygii : Poeciliidae), an invasive species in Australia. Australian Journal of Zoology, 2012, 60, 235.	1.0	3
120	Sex differences in parental care. , 2012, , 101-116.		78
121	Male fiddler crabs defend multiple burrows to attract additional females. Behavioral Ecology, 2011, 22, 261-267.	2.2	15
122	Inbreeding and courtship calling in the cricket Teleogryllus commodus. Journal of Evolutionary Biology, 2011, 24, 47-58.	1.7	8
123	Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters, 2011, 14, 419-431.	6.4	929
124	Even Weak Males Help Their Neighbours: Defence Coalitions in a Fiddler Crab. Ethology, 2011, 117, 1027-1030.	1.1	1
125	Sexual selection and sperm quantity: meta-analyses of strategic ejaculation. Biological Reviews, 2011, 86, 863-884.	10.4	264
126	Male fiddler crabs prefer conspecific females during simultaneous, but not sequential, mate choice. Animal Behaviour, 2011, 81, 775-778.	1.9	20

#	Article	IF	CITATIONS
127	The role of body size and fighting experience in predicting contest behaviour in the black field cricket, Teleogryllus commodus. Behavioral Ecology and Sociobiology, 2011, 65, 217-225.	1.4	28
128	Non-independent mate choice in a fiddler crab: a case of stimulus enhancement. Behavioral Ecology and Sociobiology, 2011, 65, 1419-1424.	1.4	6
129	Female choice over short and long distances: neighbour effects. Behavioral Ecology and Sociobiology, 2011, 65, 2071-2078.	1.4	29
130	Know thine enemy's neighbor: neighbor size affects floaters' choice of whom to fight. Behavioral Ecology, 2011, 22, 947-950.	2.2	9
131	The effect of competitor presence and relative competitive ability on male mate choice. Behavioral Ecology, 2011, 22, 769-775.	2.2	31
132	Inbreeding and measures of immune function in the cricket Teleogryllus commodus. Behavioral Ecology, 2011, 22, 486-492.	2.2	20
133	How do weaponless male fiddler crabs avoid aggression?. Behavioral Ecology and Sociobiology, 2010, 64, 485-491.	1.4	15
134	Hunting and predation in a fiddler crab. Journal of Ethology, 2010, 28, 171-173.	0.8	14
135	Investigating the â€~dear enemy' phenomenon in the territory defence of the fiddler crab, Uca mjoebergi. Animal Behaviour, 2010, 79, 419-423.	1.9	55
136	The battle of the sexes? Territory acquisition and defence in male and female fiddler crabs. Animal Behaviour, 2010, 79, 735-738.	1.9	30
137	Sexual Selection: The Weevils of Inbreeding. Current Biology, 2010, 20, R672-R673.	3.9	2
138	INBREEDING AND ADVERTISEMENT CALLING IN THE CRICKET TELEOGRYLLUS COMMODUS: LABORATORY AND FIELD EXPERIMENTS. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	28
139	Ways to raise tadpoles. Nature, 2010, 464, 990-991.	27.8	3
140	The mismeasurement of sexual selection. Journal of Evolutionary Biology, 2010, 23, 447-462.	1.7	175
141	Eavesdropping in crabs: an agency for lady detection. Biology Letters, 2010, 6, 755-757.	2.3	29
142	Interspecific assistance: fiddler crabs help heterospecific neighbours in territory defence. Biology Letters, 2010, 6, 748-750.	2.3	25
143	Females prefer to associate with males with longer intromittent organs in mosquitofish. Biology Letters, 2010, 6, 55-58.	2.3	68
144	Safe sex: male–female coalitions and pre-copulatory mate-guarding in a fiddler crab. Biology Letters, 2010, 6, 180-182.	2.3	15

#	Article	IF	CITATIONS
145	Experimental evidence for a seasonal shift in the strength of a female mating preference. Behavioral Ecology, 2010, 21, 311-316.	2.2	55
146	When and Why Do Territorial Coalitions Occur? Experimental Evidence from a Fiddler Crab. American Naturalist, 2010, 175, E119-E125.	2.1	41
147	Sexually dimorphic immune response in the harem polygynous Wellington tree weta <i>Hemideina crassidens</i> . Physiological Entomology, 2009, 34, 174-179.	1.5	22
148	Effects of juvenile and adult diet on ageing and reproductive effort of male and female black field crickets, <i>Teleogryllus commodus</i> . Functional Ecology, 2009, 23, 602-611.	3.6	63
149	THE COST OF RELIABLE SIGNALING: EXPERIMENTAL EVIDENCE FOR PREDICTABLE VARIATION AMONG MALES IN A COST-BENEFIT TRADE-OFF BETWEEN SEXUALLY SELECTED TRAITS. Evolution; International Journal of Organic Evolution, 2009, 63, 2363-2371.	2.3	24
150	Mate choice for genetic quality when environments vary: suggestions for empirical progress. Genetica, 2008, 134, 69-78.	1.1	79
151	Parental investment, sexual selection and sex ratios. Journal of Evolutionary Biology, 2008, 21, 919-948.	1.7	756
152	Does the environmental context of a signalling male influence his attractiveness?. Animal Behaviour, 2008, 76, 1565-1570.	1.9	17
153	Experiments with robots explain synchronized courtship in fiddler crabs. Current Biology, 2008, 18, R62-R63.	3.9	70
154	Sexual Conflict: The Battle of the Sexes Reversed. Current Biology, 2008, 18, R121-R123.	3.9	21
155	What factors contribute to an ownership advantage?. Biology Letters, 2008, 4, 143-145.	2.3	53
156	Evolution of frequency-dependent mate choice: keeping up with fashion trends. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1317-1324.	2.6	70
157	Reconciling Strong Stabilizing Selection with the Maintenance of Genetic Variation in a Natural Population of Black Field Crickets (Teleogryllus commodus). Genetics, 2007, 177, 875-880.	2.9	68
158	What are the consequences of being left-clawed in a predominantly right-clawed fiddler crab?. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2723-2729.	2.6	33
159	H-index: age and sex make it unreliable. Nature, 2007, 449, 403-403.	27.8	59
160	Sounds different: inbreeding depression in sexually selected traits in the cricket Teleogryllus commodus. Journal of Evolutionary Biology, 2007, 20, 1138-1147.	1.7	37
161	Do female black field crickets Teleogryllus commodus benefit from polyandry?. Journal of Evolutionary Biology, 2007, 20, 1469-1477.	1.7	32
162	No Intra-Locus Sexual Conflict over Reproductive Fitness or Ageing in Field Crickets. PLoS ONE, 2007, 2, e155.	2.5	33

#	Article	IF	CITATIONS
163	Unifying and Testing Models of Sexual Selection. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 43-66.	8.3	454
164	Complex Multivariate Sexual Selection on Male Acoustic Signaling in a Wild Population of Teleogryllus commodus. American Naturalist, 2006, 167, E102-E116.	2.1	150
165	Artificial Selection on Male Longevity Influences Ageâ€Dependent Reproductive Effort in the Black Field Cricket Teleogryllus commodus. American Naturalist, 2006, 168, E72-E86.	2.1	56
166	The h index and career assessment by numbers. Trends in Ecology and Evolution, 2006, 21, 167-170.	8.7	295
167	SEXUAL TENSION: DOES CONFLICT LEAD TO COSTLY MATE CHOICE?. Evolution; International Journal of Organic Evolution, 2006, 60, 415-417.	2.3	0
168	SEXUAL CONFLICT AND CRYPTIC FEMALE CHOICE IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution; International Journal of Organic Evolution, 2006, 60, 792-800.	2.3	21
169	Post-mating sexual selection increases lifetime fitness of polyandrous females in the wild. Nature, 2006, 444, 89-92.	27.8	187
170	Life-history phenotypes in a live-bearing fish Brachyrhaphis episcopi living under different predator regimes: seasonal effects?. Environmental Biology of Fishes, 2006, 76, 211-219.	1.0	19
171	Synchronous waving in two species of fiddler crabs. Acta Ethologica, 2006, 9, 22-25.	0.9	27
172	Mass mortality following disturbance in Holocene coral reefs from Papua New Guinea. Geology, 2006, 34, 949.	4.4	32
173	SEXUAL TENSION: DOES CONFLICT LEAD TO COSTLY MATE CHOICE?1. Evolution; International Journal of Organic Evolution, 2006, 60, 415.	2.3	1
174	SEXUAL CONFLICT AND CRYPTIC FEMALE CHOICE IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution; International Journal of Organic Evolution, 2006, 60, 792.	2.3	76
175	Sexual conflict and cryptic female choice in the black field cricket, Teleogryllus commodus. Evolution; International Journal of Organic Evolution, 2006, 60, 792-800.	2.3	18
176	EXPERIMENTAL EVIDENCE FOR MULTIVARIATE STABILIZING SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2005, 59, 871-880.	2.3	186
177	Male mating history and female fecundity in the Lepidoptera: do male virgins make better partners?. Behavioral Ecology and Sociobiology, 2005, 57, 318-326.	1.4	104
178	Fighting success and attractiveness as predictors of male mating success in the black field cricket, Teleogryllus commodus: the effectiveness of no-choice tests. Behavioral Ecology and Sociobiology, 2005, 58, 1-8.	1.4	172
179	The Indirect Benefits of Mating with Attractive Males Outweigh the Direct Costs. PLoS Biology, 2005, 3, e33.	5.6	152
180	EXPERIMENTAL EVIDENCE FOR MULTIVARIATE STABILIZING SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2005, 59, 871.	2.3	22

#	Article	IF	CITATIONS
181	Male attractiveness covaries with fighting ability but not with prior fight outcome in house crickets. Behavioral Ecology, 2005, 16, 196-200.	2.2	51
182	Female Mate Choice as a Conditionâ€Dependent Lifeâ€History Trait. American Naturalist, 2005, 166, 79-92.	2.1	225
183	Experimental evidence for multivariate stabilizing sexual selection. Evolution; International Journal of Organic Evolution, 2005, 59, 871-80.	2.3	59
184	Sinister strategies succeed at the cricket World Cup. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S64-6.	2.6	66
185	NO EVIDENCE FOR INBREEDING AVOIDANCE THROUGH POSTCOPULATORY MECHANISMS IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution; International Journal of Organic Evolution, 2004, 58, 2472.	2.3	4
186	NO EVIDENCE FOR INBREEDING AVOIDANCE THROUGH POSTCOPULATORY MECHANISMS IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution; International Journal of Organic Evolution, 2004, 58, 2472-2477.	2.3	47
187	Meta-analysis can "fail― reply to Kotiaho and Tomkins. Oikos, 2004, 104, 191-193.	2.7	17
188	High-quality male field crickets invest heavily in sexual display but die young. Nature, 2004, 432, 1024-1027.	27.8	426
189	Coalition among male fiddler crabs. Nature, 2004, 430, 417-417.	27.8	75
190	Polyandry and fecundity in the Lepidoptera: can methodological and conceptual approaches bias outcomes?. Behavioral Ecology and Sociobiology, 2004, 55, 315-324.	1.4	75
191	Sequential male mate choice in a fish, the Pacific blue-eye Pseudomugil signifer. Behavioral Ecology and Sociobiology, 2004, 56, 253.	1.4	30
192	Mate recognition in a freshwater fish: geographical distance, genetic differentiation, and variation in female preference for local over foreign males. Journal of Evolutionary Biology, 2004, 17, 701-708.	1.7	38
193	What is genetic quality?. Trends in Ecology and Evolution, 2004, 19, 329-333.	8.7	388
194	Hiding behaviour in fiddler crabs: how long should prey hide in response to a potential predator?. Animal Behaviour, 2003, 66, 251-257.	1.9	79
195	Costs influence male mate choice in a freshwater fish. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S36-8.	2.6	86
196	Response to McDowall: in defence of the caring male. Trends in Ecology and Evolution, 2003, 18, 611-612.	8.7	2
197	It takes two to tango. Trends in Ecology and Evolution, 2003, 18, 103-104.	8.7	173
198	A survey of the statistical power of research in behavioral ecology and animal behavior. Behavioral Ecology, 2003, 14, 438-445.	2.2	187

#	Article	IF	CITATIONS
199	The evolution of mate choice and mating biases. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 653-664.	2.6	733
200	Relationships fade with time: a meta-analysis of temporal trends in publication in ecology and evolution. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 43-48.	2.6	193
201	How male insects score. Trends in Ecology and Evolution, 2002, 17, 533.	8.7	0
202	Life-history phenotypes in populations of Brachyrhaphis episcopi (Poeciliidae) with different predator communities. Oecologia, 2002, 132, 44-50.	2.0	69
203	How much variance can be explained by ecologists and evolutionary biologists?. Oecologia, 2002, 132, 492-500.	2.0	420
204	Publication bias in ecology and evolution: an empirical assessment using the â€~trim and fill' method. Biological Reviews, 2002, 77, 211-222.	10.4	188
205	Geographical variation in male genitalia in Brachyrhaphis episcopi (Poeciliidae): is it sexually or naturally selected?. Oikos, 2002, 97, 79-86.	2.7	65
206	The Effect of an Experimental Brood Reduction on Male Desertion in the Panamanian Blue Acara Cichlid Aequidens coeruleopunctatus. Ethology, 2002, 108, 331-340.	1.1	11
207	A sense of history. Trends in Ecology and Evolution, 2001, 16, 113-115.	8.7	10
208	Testing and adjusting for publication bias. Trends in Ecology and Evolution, 2001, 16, 580-586.	8.7	356
209	The effect of partial brood loss on male desertion in a cichlid fish: an experimental test. Behavioral Ecology, 2001, 12, 84-92.	2.2	35
210	Sexually Selected Traits and Adult Survival: A Meta-Analysis. Quarterly Review of Biology, 2001, 76, 3-36.	0.1	336
211	How important are direct fitness benefits of sexual selection?. Die Naturwissenschaften, 2001, 88, 401-415.	1.6	257
212	Why do females mate multiply? A review of the genetic benefits. Biological Reviews, 2000, 75, 21-64.	10.4	1,553
213	Considerations on the use of video playbacks as visual stimuli: the Lisbon workshop consensus. Acta Ethologica, 2000, 3, 61-65.	0.9	75
214	Dishonest signalling in a fiddler crab. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 719-724.	2.6	167
215	Why do females mate multiply? A review of the genetic benefits. Biological Reviews, 2000, 75, 21-64.	10.4	167
216	The dark side of sexual selection. Trends in Ecology and Evolution, 1999, 14, 336-337.	8.7	18

#	Article	IF	CITATIONS
217	The effect of leg band symmetry on female–male association in zebra finches. Animal Behaviour, 1998, 55, 61-67.	1.9	30
218	Tibial coloration, fluctuating asymmetry and female choice behaviour in the damselflyPlatycypha caligata. Animal Behaviour, 1998, 55, 1517-1528.	1.9	16
219	Synchronized courtship in fiddler crabs. Nature, 1998, 391, 31-32.	27.8	109
220	Establishing cryptic female choice in animals. Trends in Ecology and Evolution, 1998, 13, 216-218.	8.7	43
221	Elevated predation risk changes mating behaviour and courtship in a fiddler crab. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1385-1390.	2.6	140
222	Variation in courtship rate in the fiddler crab Uca annulipes: is it related to male attractiveness?. Behavioral Ecology, 1998, 9, 605-611.	2.2	71
223	VARIATION IN MATE CHOICE AND MATING PREFERENCES: A REVIEW OF CAUSES AND CONSEQUENCES. Biological Reviews, 1997, 72, 283-327.	10.4	1,123
224	Staibility in coral communities: a natural experiment. Trends in Ecology and Evolution, 1997, 12, 3-4.	8.7	7
225	Female promiscuity and genetic incompatibility. Trends in Ecology and Evolution, 1997, 12, 251-253.	8.7	63
226	Stability and invasibility of coral communities Reply from M.D. Jennions. Trends in Ecology and Evolution, 1997, 12, 195.	8.7	2
227	VARIATION IN MATE CHOICE AND MATING PREFERENCES: A REVIEW OF CAUSES AND CONSEQUENCES. Biological Reviews, 1997, 72, 283-327.	10.4	198
228	The allometry of fluctuating asymmetry in southern African plants: flowers and leaves. Biological Journal of the Linnean Society, 1996, 59, 127-142.	1.6	20
229	Residency and size affect fight duration and outcome in the fiddler crab Uca annulipes. Biological Journal of the Linnean Society, 1996, 57, 293-306.	1.6	161
230	Pillar building in the fiddler crab Uca beebei: evidence for a condition-dependent ornament. Behavioral Ecology and Sociobiology, 1995, 36, 185-192.	1.4	62
231	Call Rate Variability and Female Choice in the African Frog, Hyperolius Marmoratus. Behaviour, 1995, 132, 709-720.	0.8	17
232	Chorus Size and Call Intensity: Female Choice in the Painted Reed Frog, Hyperolius Marmoratus. Behaviour, 1995, 132, 721-731.	0.8	17
233	Repeatability of mate choice: the effect of size in the African painted reed frog, Hyperolius marmoratus. Animal Behaviour, 1995, 49, 181-186.	1.9	76
234	Pillar building in the fiddler crab Uca beebei : evidence for a condition-dependent ornament. Behavioral Ecology and Sociobiology, 1995, 36, 185-192.	1.4	5

#	Article	IF	CITATIONS
235	Causes of cricket synchrony. Current Biology, 1994, 4, 1047.	3.9	3
236	Symmetry and sexual selection. Trends in Ecology and Evolution, 1994, 9, 440.	8.7	3
237	Cooperative breeding in mammals. Trends in Ecology and Evolution, 1994, 9, 89-93.	8.7	251
238	Sperm competition in frogs: testis size and a â€~sterile male' experiment on Chiromantis xerampelina (Rhacophoridae). Biological Journal of the Linnean Society, 1993, 50, 211-220.	1.6	25
239	Sperm competition in frogs: testis size and a 'sterile male' experiment on Chiromantis xerampelina (Rhacophoridae). Biological Journal of the Linnean Society, 1993, 50, 211-220.	1.6	48
240	Mate choice in the Neotropical frog, Hyla ebraccata: sexual selection, mate recognition and signal selection. Animal Behaviour, 1993, 45, 1248-1250.	1.9	27
241	Female choice in birds and the cost of long tails. Trends in Ecology and Evolution, 1993, 8, 230-232.	8.7	12
242	Breeding behaviour of the African frog, Chiromantis xerampelina: multiple spawning and polyandry. Animal Behaviour, 1992, 44, 1091-1100.	1.9	34
243	Chorus size influences on the anti-predator response of a Neotropical frog. Animal Behaviour, 1992, 44, 990-992.	1.9	29