
## Katja M Arndt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2021780/publications.pdf Version: 2024-02-01



Κλτιλ Μ Δρηστ

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Strategies for Enzymatic Inactivation of the Veterinary Antibiotic Florfenicol. Antibiotics, 2022, 11, 443.                                                                                                    | 3.7  | 2         |
| 2  | Bacteriophageâ€Templated Assembly of Magnetic Nanoparticles and Their Actuation Potential.<br>ChemNanoMat, 2021, 7, 942-949.                                                                                   | 2.8  | 3         |
| 3  | Characterizing Transcriptional Interference between Converging Genes in Bacteria. ACS Synthetic<br>Biology, 2019, 8, 466-473.                                                                                  | 3.8  | 14        |
| 4  | Detection of Incorporation of <i>p</i> -Coumaric Acid into Photoactive Yellow Protein Variants <i>in Vivo</i> . Biochemistry, 2019, 58, 2682-2694.                                                             | 2.5  | 6         |
| 5  | rAAV Engineering for Capsid-Protein Enzyme Insertions and Mosaicism Reveals Resilience to<br>Mutational, Structural and Thermal Perturbations. International Journal of Molecular Sciences,<br>2019, 20, 5702. | 4.1  | 14        |
| 6  | Selection of Protein–Protein Interactions of Desired Affinities with a Bandpass Circuit. Journal of Molecular Biology, 2019, 431, 391-400.                                                                     | 4.2  | 2         |
| 7  | Strategies for the photo-control of endogenous protein activity. Current Opinion in Structural<br>Biology, 2017, 45, 53-58.                                                                                    | 5.7  | 14        |
| 8  | A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended<br>Kalman filter. PLoS ONE, 2017, 12, e0181923.                                                               | 2.5  | 21        |
| 9  | Long-range transcriptional interference in <i>E. coli</i> used to construct a dual positive selection system for genetic switches. Nucleic Acids Research, 2016, 44, e95-e95.                                  | 14.5 | 18        |
| 10 | An <i>Escherichia coli</i> system for evolving improved light-controlled DNA-binding proteins.<br>Protein Engineering, Design and Selection, 2015, 28, 293-302.                                                | 2.1  | 8         |
| 11 | Characterization and inhibition of AF10â€mediated interaction. Journal of Peptide Science, 2014, 20, 385-397.                                                                                                  | 1.4  | 7         |
| 12 | Controlling leucine-zipper partner recognition in cells through modification of a–g interactions.<br>Chemical Communications, 2014, 50, 6364-6367.                                                             | 4.1  | 8         |
| 13 | Analysis of Selected and Designed Chimeric D- and L-α-Helix Assemblies. Biomacromolecules, 2014, 15, 3296-3305.                                                                                                | 5.4  | 3         |
| 14 | Improving coiled coil stability while maintaining specificity by a bacterial hitchhiker selection system.<br>Journal of Structural Biology, 2014, 186, 335-348.                                                | 2.8  | 11        |
| 15 | Modular adeno-associated virus (rAAV) vectors used for cellular virus-directed enzyme prodrug therapy. Scientific Reports, 2014, 4, 3759.                                                                      | 3.3  | 28        |
| 16 | Directional cloning of DNA fragments using deoxyinosine-containing oligonucleotides and endonuclease V. BMC Biotechnology, 2013, 13, 81.                                                                       | 3.3  | 7         |
| 17 | TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation. Protein Engineering, Design and Selection, 2013, 26, 225-242.            | 2.1  | 2         |
| 18 | Free energy calculations of the interactions of câ€Junâ€based synthetic peptides with the câ€Fos protein.<br>Biopolymers, 2012, 97, 899-909.                                                                   | 2.4  | 10        |

Katja M Arndt

| #  | Article                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Exploring the Molecular Linkage of Protein Stability Traits for Enzyme Optimization by Iterative Truncation and Evolution. Biochemistry, 2012, 51, 4850-4867. | 2.5  | 13        |
| 20 | Standardization in Synthetic Biology. Methods in Molecular Biology, 2012, 813, 23-43.                                                                         | 0.9  | 38        |
| 21 | Light-Controlled Gene Switches in Mammalian Cells. Methods in Molecular Biology, 2012, 813, 195-210.                                                          | 0.9  | 4         |
| 22 | Nucleotide Exchange and Excision Technology DNA Shuffling and Directed Evolution. Methods in Molecular Biology, 2011, 687, 333-344.                           | 0.9  | 7         |
| 23 | Efficient phage display of intracellularly folded proteins mediated by the TAT pathway. Protein<br>Engineering, Design and Selection, 2011, 24, 473-484.      | 2.1  | 27        |
| 24 | Photocontrol of Coiledâ€Coil Proteins in Living Cells. Angewandte Chemie - International Edition, 2010,<br>49, 3943-3946.                                     | 13.8 | 108       |
| 25 | SynBioWave—a real-time communication platform for molecular and synthetic biology.<br>Bioinformatics, 2010, 26, 2782-2783.                                    | 4.1  | 7         |
| 26 | Improving the interaction of Mycâ€interfering peptides with Myc using molecular dynamics simulations.<br>Journal of Peptide Science, 2009, 15, 5-15.          | 1.4  | 11        |
| 27 | Role of Hydrophobic and Electrostatic Interactions in Coiled Coil Stability and Specificity.<br>Biochemistry, 2009, 48, 10380-10388.                          | 2.5  | 34        |
| 28 | Selection of Peptides Interfering with Protein–Protein Interaction. Methods in Molecular Biology,<br>2009, 535, 263-291.                                      | 0.9  | 7         |
| 29 | Targeting the câ€Myc coiled coil with interfering peptides. Journal of Peptide Science, 2008, 14, 1022-1031.                                                  | 1.4  | 20        |
| 30 | Selectional and Mutational Scope of Peptides Sequestering the Jun–Fos Coiled-Coil Domain. Journal of Molecular Biology, 2008, 381, 73-88.                     | 4.2  | 49        |
| 31 | iPEP: peptides designed and selected for interfering with protein interaction and function.<br>Biochemical Society Transactions, 2008, 36, 1442-1447.         | 3.4  | 13        |
| 32 | Protein Engineering. Springer Protocols, 2008, , 587-629.                                                                                                     | 0.3  | 2         |
| 33 | Directed Protein Evolution. Springer Protocols, 2008, , 631-656.                                                                                              | 0.3  | 3         |
| 34 | Considerations in the Design and Optimization of Coiled Coil Structures. , 2007, 352, 35-70.                                                                  |      | 29        |
| 35 | A General Method of Terminal Truncation, Evolution, and Re-Elongation to Generate Enzymes of Enhanced Stability. , 2007, 352, 275-304.                        |      | 6         |
| 36 | Versatile DNA Fragmentation and Directed Evolution With Nucleotide Exchange and Excision Technology. , 2007, 352, 167-190.                                    |      | 1         |

Katja M Arndt

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Improved Stability of the Jun-Fos Activator Protein-1 Coiled Coil Motif. Journal of Biological Chemistry, 2007, 282, 23015-23024.                                                                                                                  | 3.4  | 39        |
| 38 | Positive Aspects of Negative Design:  Simultaneous Selection of Specificity and Interaction Stability.<br>Biochemistry, 2007, 46, 4804-4814.                                                                                                       | 2.5  | 55        |
| 39 | Semirational design of Jun-Fos coiled coils with increased affinity: Universal implications for leucine<br>zipper prediction and design. Proceedings of the National Academy of Sciences of the United States of<br>America, 2006, 103, 8989-8994. | 7.1  | 127       |
| 40 | Nucleotide exchange and excision technology (NExT) DNA shuffling: a robust method for DNA fragmentation and directed evolution. Nucleic Acids Research, 2005, 33, e117-e117.                                                                       | 14.5 | 36        |
| 41 | Coiled Coil Domains: Stability, Specificity, and Biological Implications. ChemBioChem, 2004, 5, 170-176.                                                                                                                                           | 2.6  | 611       |
| 42 | Coiled Coil Domains: Stability, Specificity, and Biological Implications. ChemInform, 2004, 35, no.                                                                                                                                                | 0.0  | 0         |
| 43 | Comparison of In Vivo Selection and Rational Design of Heterodimeric Coiled Coils. Structure, 2002, 10, 1235-1248.                                                                                                                                 | 3.3  | 51        |
| 44 | Helix-stabilized fv (hsfv) antibody fragments: substituting the constant domains of a fab fragment for<br>a heterodimeric coiled-coil domain 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 2001, 312,<br>221-228.                       | 4.2  | 62        |
| 45 | [22] Selectively infective phage technology. Methods in Enzymology, 2000, 328, 364-388.                                                                                                                                                            | 1.0  | 6         |
| 46 | A heterodimeric coiled-coil peptide pair selected in vivo from a designed library- versus -library<br>ensemble 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 2000, 295, 627-639.                                                        | 4.2  | 101       |
| 47 | [17] Protein fusions to coiled-coil domains. Methods in Enzymology, 2000, 328, 261-282.                                                                                                                                                            | 1.0  | 25        |
| 48 | An in vivo library-versus-library selection of optimized protein–protein interactions. Nature<br>Biotechnology, 1999, 17, 683-690.                                                                                                                 | 17.5 | 182       |
| 49 | Selectively infective phage (SIP) technology: scope and limitations. Journal of Immunological<br>Methods, 1999, 231, 93-104.                                                                                                                       | 1.4  | 35        |
| 50 | Tandem Immobilized Metal-Ion Affinity Chromatography/Immunoaffinity Purification of His-tagged<br>Proteins— Evaluation of Two Anti-His-Tag Monoclonal Antibodies. Analytical Biochemistry, 1998, 259,<br>54-61.                                    | 2.4  | 75        |
| 51 | Model and Simulation of Multivalent Binding to Fixed Ligands. Analytical Biochemistry, 1998, 261, 149-158.                                                                                                                                         | 2.4  | 135       |
| 52 | The first constant domain (CH1 and CL) of an antibody used as heterodimerization domain for bispecific miniantibodies. FEBS Letters, 1998, 422, 259-264.                                                                                           | 2.8  | 76        |
| 53 | A dimeric bispecific miniantibody combines two specificities with avidity. FEBS Letters, 1998, 432, 45-49.                                                                                                                                         | 2.8  | 69        |
| 54 | Factors Influencing the Dimer to Monomer Transition of an Antibody Single-Chain Fv Fragmentâ€.<br>Biochemistry, 1998, 37, 12918-12926.                                                                                                             | 2.5  | 144       |