List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2021762/publications.pdf Version: 2024-02-01

CÃ:ROD R MAKADA

#	Article	IF	CITATIONS
1	Defeat is a major stressor in males while social instability is stressful mainly in females: towards the development of a social stress model in female rats. Brain Research Bulletin, 1999, 50, 33-39.	3.0	211
2	Non-genomic effects of glucocorticoids in the neural system. Progress in Neurobiology, 2001, 65, 367-390.	5.7	209
3	Immunoreactive Corticotropin-Releasing Hormone in the Hypothalamoinfundibular Tract. Neuroendocrinology, 1983, 36, 415-423.	2.5	186
4	The effects of non-genomic glucocorticoid mechanisms on bodily functions and the central neural system. A critical evaluation of findings. Frontiers in Neuroendocrinology, 2008, 29, 273-291.	5.2	173
5	Glucocorticoid Implants around the Hypothalamic Paraventricular Nucleus Prevent the Increase of Corticotropin-Releasing Factor and Arginine Vasopressin Immunostaining Induced by Adrenalectomy. Neuroendocrinology, 1986, 44, 229-234.	2.5	170
6	Stressâ€Specific Regulation of Corticotropin Releasing Hormone Receptor Expression in the Paraventricular and Supraoptic Nuclei of the Hypothalamus in the Rat. Journal of Neuroendocrinology, 1994, 6, 689-696.	2.6	142
7	Identification and distribution of tuberoinfundibular neurones. Brain Research, 1972, 40, 283-290.	2.2	104
8	Corticotrope Response to Removal of Releasing Factors and Corticosteroids in Vivo*. Endocrinology, 1985, 117, 2190-2197.	2.8	104
9	Evidence that the effects of arginine-8-vasopressin (AVP) on pituitary corticotropin (ACTH) release are mediated by a novel type of receptor. Peptides, 1984, 5, 519-522.	2.4	101
10	Calcitonin gene-related peptide-containing pathways in the rat forebrain. Journal of Comparative Neurology, 2005, 489, 92-119.	1.6	97
11	Acute effects of glucocorticoids: behavioral and pharmacological perspectives. Neuroscience and Biobehavioral Reviews, 1998, 23, 337-344.	6.1	95
12	Signs of attenuated depression-like behavior in vasopressin deficient Brattleboro rats. Hormones and Behavior, 2007, 51, 395-405.	2.1	80
13	Gender-specific effect of maternal deprivation on anxiety and corticotropin-releasing hormone mRNA expression in rats. Brain Research Bulletin, 2003, 62, 85-91.	3.0	69
14	Social stress of variable intensity: physiological and behavioral consequences. Brain Research Bulletin, 1999, 48, 297-302.	3.0	65
15	Topography of the Somatostatin-Immunoreactive Fibers to the Stalk-Median Eminence of the Rat. Neuroendocrinology, 1983, 37, 1-8.	2.5	63
16	Local regulation of vasopressin and oxytocin secretion by extracellular ATP in the isolated posterior lobe of the rat hypophysis. Journal of Endocrinology, 1999, 160, 343-350.	2.6	59
17	Ultradian Corticosterone Rhythm and the Propensity to Behave Aggressively in Male Rats. Journal of Neuroendocrinology, 2001, 12, 937-940.	2.6	59
18	Total and partial hypothalamic deafferentations for topographical identification of catecholaminergic innervations of certain preoptic and hypothalamic nuclei. Brain Research, 1977, 127, 127-136.	2.2	57

#	Article	IF	CITATIONS
19	The physiology of social conflict in rats: What is particularly stressful?. Behavioral Neuroscience, 1996, 110, 353-359.	1.2	55
20	Simultaneous Blockade of Two Glutamate Receptor Subtypes (NMDA and AMPA) Results in Stressor-Specific Inhibition of Prolactin and Corticotropin Release. Neuroendocrinology, 1999, 69, 316-323.	2.5	52
21	Acute Behavioural Effects of Corticosterone Lack Specificity but Show Marked Contextâ€Dependency. Journal of Neuroendocrinology, 1997, 9, 515-518.	2.6	50
22	Effects of repeated restraint stress on hypothalamo-pituitary-adrenocortical function in vasopressin deficient Brattleboro rats. Brain Research Bulletin, 2004, 63, 521-530.	3.0	48
23	Glutamate agonists activate the hypothalamic–pituitary–adrenal axis through hypothalamic paraventricular nucleus but not through vasopressinerg neurons. Brain Research, 2005, 1031, 185-193.	2.2	48
24	Effect of Intraventricular Glutamate on ACTH Release. Neuroendocrinology, 1975, 18, 213-216.	2.5	47
25	Paraventricular nucleus controls 5-HT2C receptor-mediated corticosterone and prolactin but not oxytocin and penile erection responses. European Journal of Pharmacology, 1995, 275, 301-305.	3.5	47
26	Rostral projections from the hypothalamic arcuate nucleus. Brain Research, 1975, 84, 23-29.	2.2	46
27	The Role of Vasopressin in Hypothalamoâ€Pituitaryâ€Adrenal Axis Activation during Stress: An Assessment of the Evidence. Annals of the New York Academy of Sciences, 2004, 1018, 151-161.	3.8	46
28	Alterations in corticotropin-releasing hormone gene expression of central amygdaloid neurons following long-term paraventricular lesions and adrenalectomy. Neuroscience, 1998, 85, 135-147.	2.3	43
29	Reevaluation of the Pituitary-Adrenal Response to Ether in Rats with Various Cuts Around the Medial Basal Hypothalamus. Neuroendocrinology, 1980, 30, 38-44.	2.5	42
30	Oxytocinergic Neurons in Rat Hypothalamus. Neuroendocrinology, 1990, 51, 515-522.	2.5	41
31	Aggressive experience affects the sensitivity of neurons towards pharmacological treatment in the hypothalamic attack area. Behavioural Pharmacology, 1998, 9, 469-475.	1.7	41
32	Control of the Hypothalamo-Pituitary-Adrenal Axis in the Neonatal Period: Adrenocorticotropin and Corticosterone Stress Responses Dissociate in Vasopressin-Deficient Brattleboro Rats. Endocrinology, 2008, 149, 2576-2583.	2.8	41
33	Quantitative histological studies on the hypothalamic paraventricular nucleus in rats. II. Number of local and certain afferent nerve terminals. Brain Research, 1983, 265, 11-20.	2.2	39
34	Paraventricular and Supraoptic Nuclei of the Hypothalamus Are Not Equally Important for Oxytocin Release during Stress. Neuroendocrinology, 1993, 57, 776-781.	2.5	39
35	Long-term salt loading impairs pituitary responsiveness to ACTH secretagogues and stress in rats. Peptides, 1990, 11, 59-63.	2.4	38
36	CHANGES IN CORTICOTROPHIN RELEASING FACTOR OF THE STALK MEDIAN EMINENCE IN RATS WITH VARIOUS CUTS AROUND THE MEDIAL BASAL HYPOTHALAMUS. Journal of Endocrinology, 1979, 83, 165-173.	2.6	37

#	Article	IF	CITATIONS
37	Role of Hypothalamic Factors (Growth-Hormone-Releasing Hormone and Gamma-Aminobutyric Acid) in the Regulation of Growth Hormone Secretion in the Neonatal and Adult Rat. Neuroendocrinology, 1990, 52, 156-160.	2.5	37
38	Regulation of Pituitary Corticotropin Releasing Hormone (CRH) Receptor mRNA and CRH Binding During Adrenalectomy: Role of Glucocorticoids and Hypothalamic Factors. Journal of Neuroendocrinology, 2003, 9, 689-697.	2.6	36
39	Regulation of Pituitary V1b Vasopressin Receptor Messenger Ribonucleic Acid by Adrenalectomy and Glucocorticoid Administration. Endocrinology, 1997, 138, 5189-5194.	2.8	34
40	α2-Adrenoreceptor subtypes regulate ACTH and β-endorphin secretions during stress in the rat. Psychoneuroendocrinology, 1999, 24, 333-343.	2.7	34
41	Hypothalamic paraventricular nucleus, but not vasopressin, participates in chronic hyperactivity of the HPA axis in diabetic rats. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E243-E250.	3.5	34
42	Compression of the Pituitary Stalk Elicits Chronic Increases in CSF Vasopressin, Oxytocin as well as in Social Investigation and Aggressiveness. Journal of Neuroendocrinology, 1996, 8, 361-365.	2.6	33
43	Stress Symptoms Induced by Repeated Morphine Withdrawal in Comparison to Other Chronic Stress Models in Mice. Neuroendocrinology, 2005, 81, 205-215.	2.5	32
44	Pituitary corticotrophs proliferate temporarily after adrenalectomy. Histochemistry, 1991, 96, 185-189.	1.9	31
45	Quantitative histological studies on the hypothalamic paraventricular nucleus in rats: I. Number of cells and synaptic boutons. Brain Research, 1983, 262, 217-224.	2.2	30
46	Aggravation of nonsteroidal antiinflammatory drug gastropathy by glucocorticoid deficiency or blockade of glucocorticoid receptors in rats. Life Sciences, 2002, 71, 2457-2468.	4.3	30
47	Vasopressin Administration into the Paraventricular Nucleus Normalizes Plasma Oxytocin and Corticosterone Levels in Brattleboro Rats. Endocrinology, 2009, 150, 2791-2798.	2.8	30
48	The Effects of Cholinomimetic Drugs and Atropine on ACTH Release. Neuroendocrinology, 1976, 21, 31-41.	2.5	29
49	Housing conditions and the anxiolytic efficacy of buspirone: the relationship between main and side effects. Behavioural Pharmacology, 2000, 11, 403-412.	1.7	29
50	Corticoliberin and somatoliberin activity in the pituitary stalk median eminence of rats after neonatal treatment with monosodium glutamate. Journal of Endocrinology, 1982, 93, 239-245.	2.6	28
51	A substance P-containing hypothalamic neuronal system projects to the median eminence. Brain Research, 1986, 374, 399-401.	2.2	28
52	Maternal Genotype Influences Stress Reactivity of Vasopressin-Deficient Brattleboro Rats. Journal of Neuroendocrinology, 2003, 15, 1105-1110.	2.6	27
53	Site of Î ³ -Aminobutyric Acid (GABA)-Mediated Inhibition of Growth Hormone Secretion in the Rat. Neuroendocrinology, 1984, 39, 510-516.	2.5	26
54	Lack of episodic growth hormone secretion in rats with anterolateral deafferentation of the medial-basal hypothalamus. Journal of Endocrinology, 1982, 94, 77-81.	2.6	25

#	Article	IF	CITATIONS
55	Evidence that the Mediobasal Hypothalamus is Involved in Serotonergic Stimulation of Renin Secretion. Neuroendocrinology, 1982, 34, 323-326.	2.5	24
56	Effect of Posterior Pituitary Denervation (PPD) on Prolactin (PRL) and α-Melanocyte-Stimulating Hormone (α-MSH) Secretion of Lactating Rats. Brain Research Bulletin, 1997, 43, 313-319.	3.0	24
57	Chronic repeated restraint stress increases prolactinâ€releasing peptide/tyrosineâ€hydroxylase ratio with genderâ€related differences in the rat brain. Journal of Neurochemistry, 2008, 104, 653-666.	3.9	24
58	Hypothalamic Region and Pathways Responsible for Adrenocortical Response to Surgical Stress in Rats. Neuroendocrinology, 1976, 21, 280-288.	2.5	23
59	Neonatal Treatment with Monosodium-L-Glutamate: Differential Effects on Growth Hormone and Prolactin Release Induced by Morphine. Neuroendocrinology, 1982, 35, 231-235.	2.5	23
60	Gastroprotective action of glucocorticoids during the formation and the healing of indomethacin-induced gastric erosions in rats. Journal of Physiology (Paris), 2001, 95, 201-208.	2.1	23
61	ACTH Release after Tuberal Electrical Stimulation in Rats with Various Cuts around the Medial Basal Hypothalamus. Neuroendocrinology, 1978, 27, 109-118.	2.5	22
62	Gabaergic innervation of somatostatin-containing neurosecretory cells of the anterior periventricular hypothalamic area: A light and electron microscopy double imunolabelling study. Neuroscience, 1988, 25, 585-593.	2.3	22
63	Hypophysiotrophic function of vasopressin and oxytocin. Brain Research Bulletin, 1988, 20, 729-736.	3.0	22
64	Factors from the Paraventricular Nucleus Mediate Inhibitory Effect of Alpha-2-Adrenergic Drugs on ACTH Secretion. Neuroendocrinology, 1993, 57, 346-350.	2.5	22
65	Gamma-Aminobutyric Acid-Induced Elevation of Intracellular Calcium Concentration in Pituitary Cells of Neonatal Rats. Neuroendocrinology, 1993, 57, 1028-1034.	2.5	21
66	ACTH Response to a Low Dose but Not a High Dose of Bacterial Endotoxin in Rats Is Completely Mediated by Corticotropin-Releasing Hormone. NeuroImmunoModulation, 1994, 1, 300-307.	1.8	21
67	Vasopressin signaling at brain level controls stress hormone release: the vasopressin-deficient Brattleboro rat as a model. Amino Acids, 2015, 47, 2245-2253.	2.7	21
68	Inhibition of Suckling-Induced Prolactin Release by Dexamethasone. Endocrinology, 1991, 129, 635-640.	2.8	20
69	Effect of Electrical Stimulation of the Neurohypophysis on ACTH Release in Rats with Hypothalamic Lesions. Neuroendocrinology, 1980, 31, 237-243.	2.5	19
70	GROWTH HORMONE RELEASING ACTIVITY PERSISTS IN THE DEAFFERENTED MEDIAL-BASAL HYPOTHALAMUS OF THE RAT. Journal of Endocrinology, 1981, 91, 415-425.	2.6	19
71	Vasopressin pressor receptor-mediated activation of HPA axis by acute ethanol stress in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R458-R465.	1.8	18
72	Congenital vasopressin deficiency and acute and chronic opiate effects on hypothalamo-pituitary–adrenal axis activity in Brattleboro rats. Journal of Endocrinology, 2007, 196, 113-121.	2.6	18

#	Article	IF	CITATIONS
73	Growth hormone secretion of the neonatal rat pituitaries is stimulated by gamma-aminobutyric acid in vitro. Life Sciences, 1984, 34, 1505-1511.	4.3	17
74	Postnatal development in vasopressin deficient Brattleboro rats with special attention to the hypothalamoâ€pituitary–adrenal axis function: the role of maternal genotype. International Journal of Developmental Neuroscience, 2009, 27, 175-183.	1.6	16
75	The Vasopressin-Deficient Brattleboro Rat: Lessons for the Hypothalamo–Pituitary–Adrenal Axis Regulation. Cellular and Molecular Neurobiology, 2012, 32, 759-766.	3.3	16
76	Trypsin-like activity of rat anterior pituitary in relation to secretory activity. Life Sciences, 1979, 25, 437-443.	4.3	15
77	The role of vasopressin in diabetes mellitus-induced hypothalamo-pituitary-adrenal axis activation: Studies in Brattleboro rats. Brain Research Bulletin, 2006, 69, 48-56.	3.0	15
78	The effect of glucocorticoids on the anxiolytic efficacy of buspirone. Psychopharmacology, 2001, 157, 388-394.	3.1	14
79	Hypothalamic organization of corticotropin releasing factor (CRF) producing structures. , 1984, , 71-119.		14
80	A serine-proteinase inhibitor (Boc-D-Phe-Pro-Arg-H) inhibits the secretion of adrenocorticotropin- and β-endorphin-immunoreactive peptides. Neuropeptides, 1982, 3, 65-70.	2.2	13
81	Central Nervous System Control of Pituitary Vasopressin Receptors: Evidence for Involvement of Multiple Factors. Neuroendocrinology, 1986, 43, 618-624.	2.5	13
82	Adrenocorticotropin, Prolactin and Beta-Endorphin Stimulatory Actions of Alpha-2-Adrenoceptor Antagonists. Neuroendocrinology, 1995, 61, 152-158.	2.5	13
83	Monosodium glutamate lesions inhibit the N-methyl-D-aspartate-induced growth hormone but not prolactin release in rats. Life Sciences, 1998, 62, 2065-2072.	4.3	13
84	Intermittent prenatal MDMA exposure alters physiological but not mood related parameters in adult rat offspring. Behavioural Brain Research, 2010, 206, 299-309.	2.2	12
85	Various proteinase inhibitors decrease prolactin and growth hormone release by anterior pituitary cells. Life Sciences, 1985, 36, 549-555.	4.3	11
86	Muscarinic M1 and M3 receptors are present and increase intracellular calcium in adult rat anterior pituitary gland. Brain Research Bulletin, 1999, 48, 449-456.	3.0	11
87	Osmotic stimulation affects neurohypophysial corticotropin releasing factor-41 content: Effect of dexamethasone. Peptides, 1990, 11, 51-57.	2.4	10
88	Behavioral tactics control the energy costs of aggression: The example of Macropodus opercularis. Aggressive Behavior, 1996, 22, 437-446.	2.4	10
89	Behavioral sensitization to intermittent morphine in mice is accompanied by reduced adrenocorticotropine but not corticosterone responses. Brain Research, 2004, 1021, 63-68.	2.2	10
90	Effects of Anterolateral and Posterolateral Cuts Around the Medial Hypothalamus on the Immunoreactive ACTH and β -Endorphin Levels in Selected Brain Regions of the Rat. Brain Research Bulletin, 1997, 42, 353-357.	3.0	9

#	Article	IF	CITATIONS
91	Effect of Clutamate Receptor Antagonists on Suckling-Induced Prolactin Release in Rats. Endocrine, 2003, 21, 147-152.	2.2	9
92	Lack of the suckling-induced prolactin release in homozygous Barattleboro rats: the vasopressin-neurophysin-glycopeptide precursor may play a role in prolactin release. Brain Research, 1989, 504, 165-167.	2.2	8
93	Revaluation of the Role of Alpha ₂ -Adrenoreceptors in Morphine-Stimulated Release of Growth Hormone. Neuroendocrinology, 1991, 53, 516-522.	2.5	8
94	Hypothalamic α2A-adrenoceptors stimulate growth hormone release in the rat. European Journal of Pharmacology, 1995, 287, 43-48.	3.5	8
95	Genderâ€specific Regulation of the Hypothalamoâ€pituitaryâ€adrenal axis and the Role of Vasopressin during the Neonatal Period. Annals of the New York Academy of Sciences, 2008, 1148, 439-445.	3.8	8
96	Synthesis of angiotensin II antagonists with variations in position 5. Journal of Medicinal Chemistry, 1987, 30, 1719-1724.	6.4	6
97	Diurnal alteration in opiate effects on the hypothalamo-pituitary-adrenal axis: changes in the mechanism of action. European Journal of Pharmacology, 1995, 272, 145-150.	3.5	6
98	Vasopressin deficiency diminishes acute and long-term consequences of maternal deprivation in male rat pups. Psychoneuroendocrinology, 2015, 51, 378-391.	2.7	6
99	The tripeptide aldehyde, Boc-DPhe-Phe-Lysinal, is a novel Ca2+ channel inhibitor in pituitary cells. European Journal of Pharmacology, 1988, 151, 147-149.	3.5	5
100	Response of the Adrenomedullary System to Early Postnatal Stress in the Brattleboro Rat. Annals of the New York Academy of Sciences, 2008, 1148, 456-461.	3.8	5
101	The anterolateral projections of the medial basal hypothalamus affect sleep. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1228-R1238.	1.8	5
102	CANNABINOID-MEDIATED REGULATION OF THE HYPOTHALAMO-PITUITARY-ADRENAL AXIS in rats: AGE DEPENDENT ROLE OF VASOPRESSIN. Endocrine Regulations, 2009, 43, 13-21.	1.3	3
103	Oligopeptides interfering with calcium channels inhibit prolactin and growth hormone release by cultured anterior pituitary cells of the rat. Biochemical Pharmacology, 1990, 40, 887-892.	4.4	2
104	Anterolateral Hypothalamic Deafferentation Inhibits Histamine-Induced Prolactin Secretion and Potentiates TRH-Induced Thyrotropin Secretion in Male Rats. Neuroendocrinology, 1991, 54, 274-278.	2.5	2
105	Age-Dependent Muscarinic Stimulation of β-Endorphin Secretion From Rat Neurointermediate Lobe In Vitro. Brain Research Bulletin, 1997, 44, 719-725.	3.0	2
106	Maternal Genotype Can Influence the Outcome of a Study on Mutant Animals. Annals of the New York Academy of Sciences, 2004, 1018, 477-479.	3.8	1
107	Influence of oligopeptide aldehydes on intracellular Ca2+ concentration in rat pituitary cells. European Journal of Pharmacology, 1992, 225, 305-312.	2.6	0