Margaret M Barbour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2021741/publications.pdf

Version: 2024-02-01

89 papers

6,818 citations

76326 40 h-index 80 g-index

92 all docs 92 docs citations 92 times ranked 6964 citing authors

#	Article	IF	Citations
1	Mesophyll conductance exerts a significant limitation on photosynthesis during light induction. New Phytologist, 2022, 233, 360-372.	7.3	23
2	Expanding collaborative autoethnography into the world of natural science for transdisciplinary teams. One Earth, 2022, 5, 157-167.	6.8	10
3	Environmental, Physiological and Biochemical Processes Determining the Oxygen Isotope Ratio of Tree-Ring Cellulose. Tree Physiology, 2022, , 311-329.	2.5	8
4	Can hydraulic design explain patterns of leaf water isotopic enrichment in <scp>C₃</scp> plants?. Plant, Cell and Environment, 2021, 44, 432-444.	5.7	15
5	High water availability in drought tolerant crops is driven by root engineering of the soil micro-habitat. Geoderma, 2021, 383, 114738.	5.1	15
6	Understanding airspace in leaves: <scp>3D</scp> anatomy and directional tortuosity. Plant, Cell and Environment, 2021, 44, 2455-2465.	5.7	13
7	The effects on isotopic composition of leaf water and transpiration of adding a gasâ€exchange cuvette. Plant, Cell and Environment, 2021, 44, 2844-2857.	5.7	4
8	Open source 3D phenotyping of chickpea plant architecture across plant development. Plant Methods, 2021, 17, 95.	4.3	9
9	The role of leaf water potential in the temperature response of mesophyll conductance. New Phytologist, 2020, 225, 1193-1205.	7.3	25
10	Cell and chloroplast anatomical features are poorly estimated from 2D crossâ€sections. New Phytologist, 2020, 225, 2567-2578.	7.3	44
11	Identification of quantitative trait loci for dynamic and steady-state photosynthetic traits in a barley mapping population. AoB PLANTS, 2020, 12, plaa063.	2.3	10
12	No evidence of homeostatic regulation of leaf temperature in <i>Eucalyptus parramattensis</i> trees: integration of CO ₂ flux and oxygen isotope methodologies. New Phytologist, 2020, 228, 1511-1523.	7.3	18
13	The ¹⁸ O ecohydrology of a grassland ecosystem – predictions and observations. Hydrology and Earth System Sciences, 2019, 23, 2581-2600.	4.9	25
14	The response of mesophyll conductance to short- and long-term environmental conditions in chickpea genotypes. AoB PLANTS, 2019, 11, ply073.	2.3	14
15	The temperature response of mesophyll conductance, and its component conductances, varies between species and genotypes. Photosynthesis Research, 2019, 141, 65-82.	2.9	27
16	Embracing 3D Complexity in Leaf Carbon–Water Exchange. Trends in Plant Science, 2019, 24, 15-24.	8.8	55
17	Segmentation of lettuce in coloured 3D point clouds for fresh weight estimation. Computers and Electronics in Agriculture, 2018, 154, 373-381.	7.7	43
18	Climate and soils together regulate photosynthetic carbon isotope discrimination within C ₃ plants worldwide. Global Ecology and Biogeography, 2018, 27, 1056-1067.	5.8	85

#	Article	IF	Citations
19	Studying root water uptake of wheat genotypes in different soils using water $\hat{\Gamma}180$ stable isotopes. Agriculture, Ecosystems and Environment, 2018, 264, 119-129.	5.3	14
20	Tracking the origins of the Kok effect, 70 years after its discovery. New Phytologist, 2017, 214, 506-510.	7.3	40
21	Leaf day respiration: low <scp>CO</scp> ₂ flux but high significance for metabolism and carbon balance. New Phytologist, 2017, 216, 986-1001.	7.3	159
22	Leaf water stable isotopes and water transport outside the xylem. Plant, Cell and Environment, 2017, 40, 914-920.	5.7	20
23	Leaf hydraulic conductance and mesophyll conductance are not closely related within a single species. Plant, Cell and Environment, 2017, 40, 203-215.	5.7	35
24	Enhanced decomposition and nitrogen mineralization sustain rapid growth of Eucalyptus regnans after wildfire. Journal of Ecology, 2017, 105, 229-236.	4.0	16
25	Understanding regulation of leaf internal carbon and water transport using online stable isotope techniques. New Phytologist, 2017, 213, 83-88.	7.3	21
26	Respiratory Effects on the Carbon Isotope Discrimination Near the Compensation Point. Advances in Photosynthesis and Respiration, 2017, , 143-160.	1.0	10
27	Stable isotopes in leaf water of terrestrial plants. Plant, Cell and Environment, 2016, 39, 1087-1102.	5.7	256
28	Leaf water oxygen isotope measurement by direct equilibration. New Phytologist, 2016, 211, 1120-1128.	7.3	13
29	Online <scp>CO</scp> ₂ and H ₂ O oxygen isotope fractionation allows estimation of mesophyll conductance in C ₄ plants, and reveals that mesophyll conductance decreases as leaves age in both C ₄ and C ₃ plants. New Phytologist, 2016, 210, 875-889.	7.3	95
30	The response of mesophyll conductance to nitrogen and water availability differs between wheat genotypes. Plant Science, 2016, 251, 119-127.	3.6	31
31	Genetic control of mesophyll conductance in common wheat. New Phytologist, 2016, 209, 461-465.	7.3	26
32	Leaf vein fraction influences the PÃ \odot clet effect and $<$ sup $>$ 18 $<$ /sup $>$ 0 enrichment in leaf water. Plant, Cell and Environment, 2016, 39, 2414-2427.	5.7	41
33	Stable oxygen isotope signatures of early season wood in New Zealand kauri (Agathis australis) tree rings: Prospects for palaeoclimate reconstruction. Dendrochronologia, 2016, 40, 50-63.	2.2	14
34	Modelling nonâ€steadyâ€state isotope enrichment of leaf water in a gasâ€exchange cuvette environment. Plant, Cell and Environment, 2015, 38, 2618-2628.	5.7	24
35	Observed relationships between leaf H218O Peclet effective length and leaf hydraulic conductance reflect assumptions in Craig-Gordon model calculations. Tree Physiology, 2015, 35, 16-26.	3.1	37
36	Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf. Journal of Experimental Botany, 2015, 66, 1303-1315.	4.8	58

#	Article	IF	Citations
37	Measurements of transpiration isotopologues and leaf water to assess enrichment models in cotton. New Phytologist, 2015, 206, 637-646.	7.3	53
38	Rising temperature may negate the stimulatory effect of rising CO2 on growth and physiology of Wollemi pine (Wollemia nobilis). Functional Plant Biology, 2015, 42, 836.	2.1	18
39	New constraints on atmospheric CO ₂ concentration for the Phanerozoic. Geophysical Research Letters, 2014, 41, 4685-4694.	4.0	189
40	Turnover time of the nonâ€structural carbohydrate pool influences Î' ¹⁸ <scp>O</scp> of leaf cellulose. Plant, Cell and Environment, 2014, 37, 2500-2507.	5.7	48
41	Do tree-ring stable isotope compositions faithfully record tree carbon/water dynamics?. Tree Physiology, 2014, 34, 792-795.	3.1	22
42	Temperature sensitivity of soil and root respiration in contrasting soils. Plant and Soil, 2014, 382, 253-267.	3.7	23
43	Variation in mesophyll conductance among Australian wheat genotypes. Functional Plant Biology, 2014, 41, 568.	2.1	64
44	Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis Research, 2013, 117, 45-59.	2.9	305
45	Reconstruction of source water using the \hat{l} 180 of tree ring phenylglucosazone: A potential tool in paleoclimate studies. Dendrochronologia, 2013, 31, 153-158.	2.2	7
46	Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables. Plant, Cell and Environment, 2013, 36, 2190-2206.	5.7	57
47	Soil phosphorous and endogenous rhythms exert a larger impact than CO2 or temperature on nocturnal stomatal conductance in Eucalyptus tereticornis. Tree Physiology, 2013, 33, 1206-1215.	3.1	33
48	Sensitivity of plants to changing atmospheric <scp>CO</scp> ₂ concentration: from the geological past to the next century. New Phytologist, 2013, 197, 1077-1094.	7.3	336
49	The oxygen isotope enrichment of leafâ€exported assimilates – does it always reflect lamina leaf water enrichment?. New Phytologist, 2013, 200, 144-157.	7.3	86
50	Transpiration rate relates to within―and acrossâ€species variations in effective path length in a leaf water model of oxygen isotope enrichment. Plant, Cell and Environment, 2013, 36, 1338-1351.	5.7	84
51	Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. Plant Science, 2012, 193-194, 70-84.	3.6	563
52	Seasonal Frost Tolerance of Trees in the New Zealand Treeline Ecotone. Arctic, Antarctic, and Alpine Research, 2012, 44, 332-342.	1.1	8
53	Shortâ€term effects of CO ₂ and O ₂ on citrate metabolism in illuminated leaves. Plant, Cell and Environment, 2012, 35, 2208-2220.	5.7	53
54	Effects of leaf age and tree size on stomatal and mesophyll limitations to photosynthesis in mountain beech (Nothofagus solandrii var. cliffortiodes). Tree Physiology, 2011, 31, 985-996.	3.1	37

#	Article	IF	Citations
55	<i>ì'</i> √sup>13C of leafâ€respired CO ₂ reflects intrinsic waterâ€use efficiency in barley. Plant, Cell and Environment, 2011, 34, 792-799.	5.7	21
56	Rapid changes in Î' ¹³ C of ecosystemâ€respired CO ₂ after sunset are consistent with transient ¹³ C enrichment of leaf respired CO ₂ . New Phytologist, 2011, 190, 990-1002.	7.3	36
57	Ecosystem service and biodiversity trade-offs in two woody successions. Journal of Applied Ecology, 2011, 48, 926-934.	4.0	96
58	Spatial variation in photosynthetic CO $\langle sub \rangle 2\langle sub \rangle$ carbon and oxygen isotope discrimination along leaves of the monocot triticale ($\langle i \rangle T$ riticum $\langle i \rangle \hat{a} \in f \tilde{A} - \hat{a} \in f \langle i \rangle S$ ecale $\langle i \rangle$) relates to mesophyll conductance and the Péclet effect. Plant, Cell and Environment, 2011, 34, 1548-1562.	5.7	34
59	Declining foliar and litter δ ¹⁵ N diverge from soil, epiphyte and input δ ¹⁵ N along a 120 000 yr temperate rainforest chronosequence. New Phytologist, 2011, 190, 941-952.	7.3	31
60	Examining the largeâ€scale convergence of photosynthesisâ€weighted tree leaf temperatures through stable oxygen isotope analysis of multiple data sets. New Phytologist, 2011, 192, 912-924.	7.3	45
61	A unique web resource for physiology, ecology and the environmental sciences: PrometheusWiki. Functional Plant Biology, 2010, 37, 687.	2.1	20
62	Soil properties and presence of plants affect the temperature sensitivity of carbon dioxide production by soils. Plant and Soil, 2010, 337, 375-387.	3.7	15
63	Quantifying the contribution of soil organic matter turnover to forest soil respiration, using natural abundance l´13C. Soil Biology and Biochemistry, 2010, 42, 935-943.	8.8	55
64	Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. Plant, Cell and Environment, 2010, 33, 1176-85.	5.7	125
65	The impact of soil microorganisms on the global budget of \hat{l} (sup>18 (sup> 0 in atmospheric CO (sub>2 (sub>. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22411-22415.	7.1	74
66	A singleâ€substrate model to interpret intraâ€annual stable isotope signals in treeâ€ring cellulose. Plant, Cell and Environment, 2009, 32, 1071-1090.	5.7	100
67	Stable carbon isotopes reveal dynamics of respiratory metabolism. New Phytologist, 2009, 181, 243-245.	7.3	25
68	Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology, 2009, 36, 199.	2.1	348
69	Understanding the Stable Isotope Composition of Biosphere-Atmosphere CO2Exchange. Eos, 2008, 89, 94.	0.1	16
70	Stable oxygen isotope composition of plant tissue: a review. Functional Plant Biology, 2007, 34, 83.	2.1	526
71	A new measurement technique reveals temporal variation in ?180 of leaf-respired CO2. Plant, Cell and Environment, 2007, 30, 456-468.	5.7	36
72	A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Plant, Cell and Environment, 2007, 30, 469-482.	5.7	148

#	Article	IF	Citations
73	The stomatal response to evaporative demand persists at night in Ricinus communis plants with high nocturnal conductance. Plant, Cell and Environment, 2007, 30, 711-721.	5 . 7	77
74	Spatial and temporal scaling of intercellular CO2 concentration in a temperate rain forest dominated by Dacrydium cupressinum in New Zealand. Plant, Cell and Environment, 2006, 29, 497-510.	5.7	11
75	Components of ecosystem evaporation in a temperate coniferous rainforest, with canopy transpiration scaled using sapwood density. New Phytologist, 2005, 165, 549-558.	7.3	55
76	Variation in the degree of coupling between \hat{l} 13 C of phloem sap and ecosystem respiration in two mature Nothofagus forests. New Phytologist, 2005, 166, 497-512.	7.3	68
77	Sap flow rates and sapwood density are critical factors in within―and betweenâ€tree variation in CO 2 efflux from stems of mature Dacrydium cupressinum trees. New Phytologist, 2005, 167, 815-828.	7.3	83
78	Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing progression and retrogression along a soil fertility chronosequence in New Zealand. Oecologia, 2005, 144, 233-244.	2.0	56
79	Sucrose application, soil microbial respiration and evolved carbon dioxide isotope enrichment under contrasting land uses. Plant and Soil, 2005, 268, 233-242.	3.7	17
80	Nocturnal stomatal conductance and implications for modelling $\hat{\Gamma}180$ of leaf-respired CO2 in temperate tree species. Functional Plant Biology, 2005, 32, 1107.	2.1	67
81	Factors Affecting the Oxygen Isotope Ratio of Plant Organic Material. , 2005, , 9-28.		22
82	Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a P�clet effect. Oecologia, 2004, 138, 426-435.	2.0	252
83	Do pathways of water movement and leaf anatomical dimensions allow development of gradients in H218O between veins and the sites of evaporation within leaves? Plant, Cell and Environment, 2004, 27, 107-121.	5 . 7	86
84	A demonstration of the theoretical prediction that sap velocity is related to wood density in the conifer Dacrydium cupressinum. New Phytologist, 2003, 158, 477-488.	7.3	41
85	Seasonal variation in \hat{l} 13 C and \hat{l} 18 O of cellulose from growth rings of Pinus radiata. Plant, Cell and Environment, 2002, 25, 1483-1499.	5 . 7	239
86	Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Functional Plant Biology, 2001, 28, 335.	2.1	69
87	Relative humidity―and ABAâ€induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant, Cell and Environment, 2000, 23, 473-485.	5.7	337
88	Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Functional Plant Biology, 2000, 27, 625.	2.1	83
89	Variation in the Oxygen Isotope Ratio of Phloem Sap Sucrose from Castor Bean. Evidence in Support of the Péclet Effect. Plant Physiology, 2000, 123, 671-680.	4.8	150