## Juan M D Tascon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2021607/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Simple and Expeditious Route to Phosphate-Functionalized, Water-Processable Graphene for<br>Capacitive Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 54860-54873.                                                                    | 4.0 | 9         |
| 2  | Aqueous Cathodic Exfoliation Strategy toward Solution-Processable and Phase-Preserved<br>MoS <sub>2</sub> Nanosheets for Energy Storage and Catalytic Applications. ACS Applied Materials<br>& Interfaces, 2019, 11, 36991-37003.                      | 4.0 | 43        |
| 3  | High quality, low-oxidized graphene via anodic exfoliation with table salt as an efficient<br>oxidation-preventing co-electrolyte for water/oil remediation and capacitive energy storage<br>applications. Applied Materials Today, 2018, 11, 246-254. | 2.3 | 28        |
| 4  | A biosupramolecular approach to graphene: Complementary nucleotide-nucleobase combinations as<br>enhanced stabilizers towards aqueous-phase exfoliation and functional graphene-nucleotide<br>hydrogels. Carbon, 2018, 129, 321-334.                   | 5.4 | 5         |
| 5  | A simple strategy to improve the yield of graphene nanosheets in the anodic exfoliation of graphite foil. Carbon, 2017, 115, 625-628.                                                                                                                  | 5.4 | 43        |
| 6  | Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen<br>Content Graphene for Energy and Environmental Applications. ACS Applied Materials & Interfaces,<br>2017, 9, 24085-24099.                            | 4.0 | 92        |
| 7  | Aqueous Exfoliation of Transition Metal Dichalcogenides Assisted by DNA/RNA Nucleotides:<br>Catalytically Active and Biocompatible Nanosheets Stabilized by Acid–Base Interactions. ACS Applied<br>Materials & Interfaces, 2017, 9, 2835-2845.         | 4.0 | 33        |
| 8  | Efficient Pt electrocatalysts supported onto flavin mononucleotide–exfoliated pristine graphene for the methanol oxidation reaction. Electrochimica Acta, 2017, 231, 386-395.                                                                          | 2.6 | 21        |
| 9  | A "Nanopore Lithography―Strategy for Synthesizing Hierarchically Micro/Mesoporous Carbons from<br>ZIF-8/Graphene Oxide Hybrids for Electrochemical Energy Storage. ACS Applied Materials &<br>Interfaces, 2017, 9, 44740-44755.                        | 4.0 | 46        |
| 10 | Effect of nanostructure on the supercapacitor performance of activated carbon xerogels obtained from hydrothermally carbonized glucose-graphene oxide hybrids. Carbon, 2016, 105, 474-483.                                                             | 5.4 | 66        |
| 11 | Synthesis and properties of TiO2-P2O5 and SiO2-TiO2-P2O5 porous hybrids obtained by templating in highly concentrated emulsions. Ceramics International, 2016, 42, 18965-18973.                                                                        | 2.3 | 4         |
| 12 | Impact of Covalent Functionalization on the Aqueous Processability, Catalytic Activity, and<br>Biocompatibility of Chemically Exfoliated MoS <sub>2</sub> Nanosheets. ACS Applied Materials &<br>Interfaces, 2016, 8, 27974-27986.                     | 4.0 | 73        |
| 13 | The importance of electrode characterization to assess the supercapacitor performance of ordered mesoporous carbons. Microporous and Mesoporous Materials, 2016, 235, 1-8.                                                                             | 2.2 | 26        |
| 14 | Nitrogen doped mesoporous carbon aerogels and implications for electrocatalytic oxygen reduction reactions. Microporous and Mesoporous Materials, 2016, 230, 135-144.                                                                                  | 2.2 | 39        |
| 15 | Diffusion of molecular hydrogen in carbon aerogel. Carbon, 2016, 98, 572-581.                                                                                                                                                                          | 5.4 | 11        |
| 16 | Grafting of adipic anhydride to carbon nanotubes through a Diels-Alder cycloaddition/oxidation cascade reaction. Carbon, 2016, 98, 421-431.                                                                                                            | 5.4 | 14        |
| 17 | Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes. Nanoscale, 2016, 8, 2982-2998.                                                                             | 2.8 | 84        |
| 18 | High quality, low oxygen content and biocompatible graphene nanosheets obtained by anodic exfoliation of different graphite types. Carbon, 2015, 94, 729-739.                                                                                          | 5.4 | 83        |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | pH-responsive ordered mesoporous carbons for controlled ibuprofen release. Carbon, 2015, 94,<br>152-159.                                                                                                                                                             | 5.4 | 25        |
| 20 | Synthesis, characterization and dye removal capacities of N-doped mesoporous carbons. Journal of<br>Colloid and Interface Science, 2015, 450, 91-100.                                                                                                                | 5.0 | 79        |
| 21 | Achieving Extremely Concentrated Aqueous Dispersions of Graphene Flakes and Catalytically Efficient<br>Graphene-Metal Nanoparticle Hybrids with Flavin Mononucleotide as a High-Performance Stabilizer.<br>ACS Applied Materials & Interfaces, 2015, 7, 10293-10307. | 4.0 | 101       |
| 22 | Investigating the Dispersion Behavior in Solvents, Biocompatibility, and Use as Support for Highly<br>Efficient Metal Catalysts of Exfoliated Graphitic Carbon Nitride. ACS Applied Materials &<br>Interfaces, 2015, 7, 24032-24045.                                 | 4.0 | 57        |
| 23 | From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration. Nanoscale, 2015, 7, 2374-2390.                                                                                                                            | 2.8 | 95        |
| 24 | Activated carbon xerogels with a cellular morphology derived from hydrothermally carbonized glucose-graphene oxide hybrids and their performance towards CO2 and dye adsorption. Carbon, 2015, 81, 137-147.                                                          | 5.4 | 68        |
| 25 | Chemically Exfoliated MoS <sub>2</sub> Nanosheets as an Efficient Catalyst for Reduction Reactions<br>in the Aqueous Phase. ACS Applied Materials & Interfaces, 2014, 6, 21702-21710.                                                                                | 4.0 | 126       |
| 26 | Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly. Journal of Alloys and Compounds, 2014, 583, 60-69.                                                                                               | 2.8 | 32        |
| 27 | Hierarchical micro-mesoporous carbons by direct replication of bimodal aluminosilicate templates.<br>Microporous and Mesoporous Materials, 2014, 190, 156-164.                                                                                                       | 2.2 | 8         |
| 28 | Aromatic polyamides as new precursors of nitrogen and oxygen-doped ordered mesoporous carbons.<br>Carbon, 2014, 70, 119-129.                                                                                                                                         | 5.4 | 55        |
| 29 | Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants. RSC Advances, 2014, 4, 14115-14127.                                                                                                   | 1.7 | 101       |
| 30 | A quantitative analysis of the dispersion behavior of reduced graphene oxide in solvents. Carbon, 2014, 75, 390-400.                                                                                                                                                 | 5.4 | 66        |
| 31 | Influence of Porous Texture and Surface Chemistry on the CO <sub>2</sub> Adsorption Capacity of Porous Carbons: Acidic and Basic Site Interactions. ACS Applied Materials & amp; Interfaces, 2014, 6, 21237-21247.                                                   | 4.0 | 147       |
| 32 | The solvent effect on the sidewall functionalization of multi-walled carbon nanotubes with maleic anhydride. Carbon, 2014, 78, 401-414.                                                                                                                              | 5.4 | 4         |
| 33 | Controlled generation of atomic vacancies in chemical vapor deposited graphene by microwave oxygen plasma. Carbon, 2014, 79, 664-669.                                                                                                                                | 5.4 | 26        |
| 34 | Highly efficient silver-assisted reduction of graphene oxide dispersions at room temperature:<br>mechanism, and catalytic and electrochemical performance of the resulting hybrids. Journal of<br>Materials Chemistry A, 2014, 2, 7295-7305.                         | 5.2 | 29        |
| 35 | Evolution of the complex surface chemistry in mesoporous carbons obtained from polyaramide precursors. Applied Surface Science, 2014, 299, 19-28.                                                                                                                    | 3.1 | 19        |
| 36 | Effects of the mesostructural order on the electrochemical performance of hierarchical micro–mesoporous carbons. Journal of Materials Chemistry A, 2014, 2, 12023-12030.                                                                                             | 5.2 | 22        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Capacitive Behaviours of Phosphorus-Rich Carbons Derived from Lignocelluloses. Electrochimica<br>Acta, 2014, 137, 219-227.                                                                                                | 2.6 | 85        |
| 38 | Energy Storage on Ultrahigh Surface Area Activated Carbon Fibers Derived from PMIA. ChemSusChem, 2013, 6, 1406-1413.                                                                                                      | 3.6 | 19        |
| 39 | Identifying efficient natural bioreductants for the preparation of graphene and graphene-metal nanoparticle hybrids with enhanced catalytic activity from graphite oxide. Carbon, 2013, 63, 30-44.                        | 5.4 | 42        |
| 40 | Surface modification of nanocast ordered mesoporous carbons through a wet oxidation method.<br>Carbon, 2013, 62, 193-203.                                                                                                 | 5.4 | 51        |
| 41 | Developing green photochemical approaches towards the synthesis of carbon nanofiber- and graphene-supported silver nanoparticles and their use in the catalytic reduction of 4-nitrophenol. RSC Advances, 2013, 3, 18323. | 1.7 | 31        |
| 42 | Discovery of effective solvents for platelet-type graphite nanofibers. Carbon, 2013, 53, 222-230.                                                                                                                         | 5.4 | 9         |
| 43 | Tailoring of the interfacial properties of polymeric single fibre-reinforced epoxy composites by non-oxidative plasma treatments. Composites Part A: Applied Science and Manufacturing, 2013, 50, 102-109.                | 3.8 | 13        |
| 44 | Chemical and structural modifications of carbon nanofibers with different degrees of graphitic order following oxygen plasma treatments. Materials Chemistry and Physics, 2013, 138, 615-622.                             | 2.0 | 15        |
| 45 | Towards full repair of defects in reduced graphene oxide films by two-step graphitization. Nano Research, 2013, 6, 216-233.                                                                                               | 5.8 | 199       |
| 46 | One-pot endo/exotemplating of hierarchical micro-mesoporous carbons. Carbon, 2013, 54, 365-377.                                                                                                                           | 5.4 | 12        |
| 47 | Preparation, characterization and fundamental studies on graphenes by liquid-phase processing of graphite. Journal of Alloys and Compounds, 2012, 536, S450-S455.                                                         | 2.8 | 16        |
| 48 | Activated Carbon Fibers with a High Heteroatom Content by Chemical Activation of PBO with Phosphoric Acid. Langmuir, 2012, 28, 5850-5860.                                                                                 | 1.6 | 18        |
| 49 | N-containing carbons from styrene–divinylbenzene copolymer by urea treatment. Applied Surface<br>Science, 2012, 258, 2410-2415.                                                                                           | 3.1 | 8         |
| 50 | Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide. Journal of Alloys and Compounds, 2012, 536, S532-S537.                                                           | 2.8 | 74        |
| 51 | Structural and surface modifications of carbon nanotubes when submitted to high temperature annealing treatments. Journal of Alloys and Compounds, 2012, 536, S460-S463.                                                  | 2.8 | 21        |
| 52 | Comparative XRD, Raman, and TEM Study on Graphitization of PBO-Derived Carbon Fibers. Journal of Physical Chemistry C, 2012, 116, 257-268.                                                                                | 1.5 | 183       |
| 53 | Nanostructure evolution in heat-treated porous carbons derived from PBO polymer. Journal of Alloys and Compounds, 2012, 536, S464-S468.                                                                                   | 2.8 | 7         |
| 54 | Adsorption by Phosphorus-Containing Carbons. , 2012, , 245-267.                                                                                                                                                           |     | 7         |

54 Adsorption by Phosphorus-Containing Carbons. , 2012, , 245-267.

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Morphology and adsorption properties of chemically modified MWCNT probed by nitrogen, n-propane and water vapor. Carbon, 2012, 50, 577-585.                                                                                        | 5.4 | 31        |
| 56 | UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction,<br>formation of graphene–metal nanoparticle hybrids and dye degradation. Carbon, 2012, 50, 1014-1024.                                   | 5.4 | 171       |
| 57 | Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon, 2012, 50, 3184-3194.                                       | 5.4 | 97        |
| 58 | Graphitization of highly porous carbons derived from poly(p-phenylene benzobisoxazole). Carbon, 2012, 50, 2929-2940.                                                                                                               | 5.4 | 33        |
| 59 | Avoiding structure degradation during activation of ordered mesoporous carbons. Carbon, 2012, 50, 3826-3835.                                                                                                                       | 5.4 | 23        |
| 60 | Effects of phosphoric acid as additive in the preparation of activated carbon fibers from<br>poly(p-phenylene benzobisoxazole) by carbon dioxide activation. Journal of Analytical and Applied<br>Pyrolysis, 2012, 95, 68-74.      | 2.6 | 13        |
| 61 | Synthesis of ordered micro–mesoporous carbons by activation of SBA-15 carbon replicas.<br>Microporous and Mesoporous Materials, 2012, 151, 390-396.                                                                                | 2.2 | 44        |
| 62 | Synthesis and characterization of graphene–mesoporous silica nanoparticle hybrids. Microporous and Mesoporous Materials, 2012, 160, 18-24.                                                                                         | 2.2 | 25        |
| 63 | Influence of plasma surface treatments on kink band formation in PBO fibers during compression.<br>Journal of Applied Polymer Science, 2012, 123, 2052-2063.                                                                       | 1.3 | 13        |
| 64 | Global and Local Oxidation Behavior of Reduced Graphene Oxide. Journal of Physical Chemistry C,<br>2011, 115, 7956-7966.                                                                                                           | 1.5 | 36        |
| 65 | High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon, 2011, 49, 1653-1662.                                                                                           | 5.4 | 461       |
| 66 | Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. Journal of Materials Chemistry, 2011, 21, 298-306.                                                                     | 6.7 | 173       |
| 67 | Surface modification of high-performance polymeric fibers by an oxygen plasma. A comparative study of poly(p-phenylene terephthalamide) and poly(p-phenylene benzobisoxazole). Journal of Chromatography A, 2011, 1218, 3781-3790. | 1.8 | 8         |
| 68 | Effect of Plasma Treatments of Bisphenol A Polycarbonate on the Characteristics of Carbon Materials<br>Obtained by Further Pyrolysis. Plasma Processes and Polymers, 2011, 8, 942-950.                                             | 1.6 | 5         |
| 69 | Complementary X-ray scattering and high resolution imaging of nanostructure development in thermally treated PBO fibers. Carbon, 2011, 49, 2960-2970.                                                                              | 5.4 | 20        |
| 70 | Effect of oxygen plasma treatment of PPTA and PBO fibers on the interfacial properties of single<br>fiber/epoxy composites studied by Raman spectroscopy. Composites Science and Technology, 2011, 71,<br>784-790.                 | 3.8 | 53        |
| 71 | Surface chemical modifications induced on high surface area graphite and carbon nanofibers using<br>different oxidation and functionalization treatments. Journal of Colloid and Interface Science, 2011,<br>355, 179-189.         | 5.0 | 110       |
| 72 | Activated carbon fibers with a high content of surface functional groups by phosphoric acid activation of PPTA. Journal of Colloid and Interface Science, 2011, 361, 307-315.                                                      | 5.0 | 58        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A comparison between physically and chemically driven etching in the oxidation of graphite surfaces.<br>Journal of Colloid and Interface Science, 2010, 344, 451-459.                                                        | 5.0 | 37        |
| 74 | A study of the surface morphology of poly(p-phenylene terephthalamide) chars using scanning probe microscopy. Polymer Degradation and Stability, 2010, 95, 702-707.                                                          | 2.7 | 6         |
| 75 | Determining the thickness of chemically modified graphenes by scanning probe microscopy. Carbon, 2010, 48, 2657-2660.                                                                                                        | 5.4 | 46        |
| 76 | The key role of microtexture in the graphitisation of PBO fibre chars as seen by X-ray scattering and transmission electron microscopy. Carbon, 2010, 48, 3968-3970.                                                         | 5.4 | 5         |
| 77 | Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C, 2010, 114, 6426-6432.                                                                        | 1.5 | 1,230     |
| 78 | Effect of PPTA pre-impregnation with phosphoric acid on the porous texture of carbons prepared by CO2 activation of PPTA chars. Microporous and Mesoporous Materials, 2009, 119, 284-289.                                    | 2.2 | 10        |
| 79 | Porosity development in chars from thermal degradation of poly(p-phenylene benzobisoxazole).<br>Polymer Degradation and Stability, 2009, 94, 7-12.                                                                           | 2.7 | 10        |
| 80 | Porosity development in chars from thermal decomposition of poly(p-phenylene terephthalamide).<br>Polymer Degradation and Stability, 2009, 94, 1890-1894.                                                                    | 2.7 | 1         |
| 81 | A possible buckybowl-like structure of zeolite templated carbon. Carbon, 2009, 47, 1220-1230.                                                                                                                                | 5.4 | 243       |
| 82 | Atomic Vacancy Engineering of Graphitic Surfaces: Controlling the Generation and Harnessing the Migration of the Single Vacancy. Journal of Physical Chemistry C, 2009, 113, 10249-10255.                                    | 1.5 | 34        |
| 83 | A Combined Experimental and Theoretical Investigation of Atomic-Scale Defects Produced on Graphite<br>Surfaces by Dielectric Barrier Discharge Plasma Treatment. Journal of Physical Chemistry C, 2009, 113,<br>18719-18729. | 1.5 | 12        |
| 84 | Highly Stable Performance of Supercapacitors from Phosphorus-Enriched Carbons. Journal of the American Chemical Society, 2009, 131, 5026-5027.                                                                               | 6.6 | 564       |
| 85 | Preparation of graphene dispersions and graphene-polymer composites in organic media. Journal of<br>Materials Chemistry, 2009, 19, 3591.                                                                                     | 6.7 | 293       |
| 86 | Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from<br>Graphite Oxide. Langmuir, 2009, 25, 5957-5968.                                                                                 | 1.6 | 631       |
| 87 | Tuning of texture and surface chemistry of carbon xerogels. Journal of Colloid and Interface Science, 2008, 324, 150-155.                                                                                                    | 5.0 | 81        |
| 88 | Microporosity and mesoporosity of PPTA-derived carbons. Effect of PPTA thermal pretreatment.<br>Microporous and Mesoporous Materials, 2008, 114, 185-192.                                                                    | 2.2 | 16        |
| 89 | Porous texture evolution in activated carbon fibers prepared from poly (p-phenylene benzobisoxazole) by carbon dioxide activation. Microporous and Mesoporous Materials, 2008, 116, 622-626.                                 | 2.2 | 18        |
| 90 | Modification of the pyrolysis/carbonization of PPTA polymer by intermediate isothermal treatments.<br>Carbon, 2008, 46, 985-993.                                                                                             | 5.4 | 34        |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Activated carbon fibers from poly(p-phenylene benzobisoxazole). Carbon, 2008, 46, 825-828.                                                                               | 5.4 | 8         |
| 92  | New atomic-scale features in graphite surfaces treated in a dielectric barrier discharge plasma.<br>Carbon, 2008, 46, 1364-1367.                                         | 5.4 | 6         |
| 93  | Graphene Oxide Dispersions in Organic Solvents. Langmuir, 2008, 24, 10560-10564.                                                                                         | 1.6 | 2,511     |
| 94  | Overview of Carbon Materials in Relation to Adsorption. , 2008, , 15-49.                                                                                                 |     | 6         |
| 95  | Energetics of Gas Adsorption by Carbons. , 2008, , 53-76.                                                                                                                |     | 4         |
| 96  | Impact of the Carbonization Atmosphere on the Properties of Phosphoric Acid-Activated Carbons from Fruit Stones. Adsorption Science and Technology, 2008, 26, 843-851.   | 1.5 | 4         |
| 97  | Multiscale Imaging and Tip-Scratch Studies Reveal Insight into the Plasma Oxidation of Graphite.<br>Langmuir, 2007, 23, 8932-8943.                                       | 1.6 | 53        |
| 98  | Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon, 2007, 45, 1941-1950.                                                                       | 5.4 | 115       |
| 99  | A comparison of different carbon filaments on the nanometer and atomic scales by scanning tunneling microscopy. Materials Letters, 2007, 61, 4787-4790.                  | 1.3 | 2         |
| 100 | Real-Time Monitoring of Polymer Swelling on the Nanometer Scale by Atomic Force Microscopy.<br>Langmuir, 2006, 22, 4728-4733.                                            | 1.6 | 16        |
| 101 | A Microscopic View of Physical and Chemical Activation in the Synthesis of Porous Carbons.<br>Langmuir, 2006, 22, 9730-9739.                                             | 1.6 | 10        |
| 102 | Nitrogen in aramid-based activated carbon fibers by TPD, XPS and XANES. Carbon, 2006, 44, 2452-2462.                                                                     | 5.4 | 83        |
| 103 | Imaging the structure and porosity of active carbons by scanning tunneling microscopy. Carbon, 2006, 44, 2469-2478.                                                      | 5.4 | 20        |
| 104 | New structural insights into ordered porous carbon by scanning tunneling microscopy.<br>Microporous and Mesoporous Materials, 2006, 87, 268-271.                         | 2.2 | 0         |
| 105 | Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors.<br>Journal of Power Sources, 2006, 153, 419-423.                           | 4.0 | 98        |
| 106 | Surface characterisation of plasma-modified poly(ethylene terephthalate). Journal of Colloid and<br>Interface Science, 2006, 293, 353-363.                               | 5.0 | 49        |
| 107 | Synthetic Carbons Derived from a Styrene—Divinylbenzene Copolymer Using Phosphoric Acid<br>Activation. Adsorption Science and Technology, 2005, 23, 19-26.               | 1.5 | 2         |
| 108 | Carbon molecular sieve cloths prepared by chemical vapour deposition of methane for separation of gas mixtures. Microporous and Mesoporous Materials, 2005, 77, 109-118. | 2.2 | 43        |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Effects of oxygen and carbon dioxide plasmas on the surface of poly(ethylene terephthalate). Journal of Colloid and Interface Science, 2005, 287, 57-66.                                                                               | 5.0 | 42        |
| 110 | Nanoscale investigation of the structural and chemical changes induced by oxidation on carbon<br>black surfaces: A scanning probe microscopy approach. Journal of Colloid and Interface Science, 2005,<br>288, 190-199.                | 5.0 | 25        |
| 111 | A study of the effect of plasma treatment on the interfacial properties of carbon fibre–thermoplastic composites. Carbon, 2005, 43, 1795-1799.                                                                                         | 5.4 | 123       |
| 112 | Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon, 2005, 43, 2857-2868.                                                                                                                             | 5.4 | 316       |
| 113 | Structural Investigation of Zeolite-templated, Ordered Microporous Carbon by Scanning Tunneling<br>Microscopy and Raman Spectroscopy. Langmuir, 2005, 21, 8817-8823.                                                                   | 1.6 | 32        |
| 114 | Graphitization of carbon nanofibers: visualizing the structural evolution on the nanometer and atomic scales by scanning tunneling microscopy. Applied Physics A: Materials Science and Processing, 2005, 80, 675-682.                 | 1.1 | 33        |
| 115 | Thermogravimetric studies on the activation of nanometric carbon fibers. Journal of Thermal<br>Analysis and Calorimetry, 2005, 79, 525-528.                                                                                            | 2.0 | 5         |
| 116 | Nanoporous carbon fibres by pyrolysis of nomex polyaramid fibres. Journal of Thermal Analysis and Calorimetry, 2005, 79, 529-532.                                                                                                      | 2.0 | 26        |
| 117 | Activated Carbon Materials of Uniform Porosity from Polyaramid Fibers. Chemistry of Materials, 2005, 17, 5893-5908.                                                                                                                    | 3.2 | 82        |
| 118 | Mechanical properties of high-strength carbon fibres. Validation of an end-effect model for describing experimental data. Carbon, 2004, 42, 1275-1278.                                                                                 | 5.4 | 31        |
| 119 | Nomex polyaramid as a precursor for activated carbon fibres by phosphoric acid activation.<br>Temperature and time effects. Microporous and Mesoporous Materials, 2004, 75, 73-80.                                                     | 2.2 | 34        |
| 120 | The effect of demineralisation on a lignite surface properties. Fuel, 2004, 83, 845-850.                                                                                                                                               | 3.4 | 17        |
| 121 | The use of microcalorimetry to assess the size exclusion properties of carbon molecular sieves.<br>Thermochimica Acta, 2004, 420, 141-144.                                                                                             | 1.2 | 13        |
| 122 | Thermal decomposition of poly(p-phenylene benzobisoxazole) fibres: monitoring the chemical and<br>nanostructural changes by Raman spectroscopy and scanning probe microscopy. Polymer Degradation<br>and Stability, 2004, 86, 263-268. | 2.7 | 20        |
| 123 | Activated carbon fibers from Nomex by chemical activation with phosphoric acid. Carbon, 2004, 42, 1419-1426.                                                                                                                           | 5.4 | 140       |
| 124 | Ethylene physisorption on C60 fullerene. Carbon, 2004, 42, 1333-1337.                                                                                                                                                                  | 5.4 | 7         |
| 125 | Effect of Phosphoric Acid on Chemical Transformations during Nomex Pyrolysis. Chemistry of<br>Materials, 2004, 16, 2639-2647.                                                                                                          | 3.2 | 34        |
| 126 | Oxygen plasma modification of pitch-based isotropic carbon fibres. Carbon, 2003, 41, 41-56.                                                                                                                                            | 5.4 | 181       |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Synthetic carbons activated with phosphoric acid III. Carbons prepared in air. Carbon, 2003, 41, 1181-1191.                                                                              | 5.4 | 141       |
| 128 | Atomic-scale scanning tunneling microscopy study of plasma-oxidized ultrahigh-modulus carbon fiber surfaces. Journal of Colloid and Interface Science, 2003, 258, 276-282.               | 5.0 | 25        |
| 129 | Application of scanning tunneling and atomic force microscopies to the characterization of microporous and mesoporous materials. Microporous and Mesoporous Materials, 2003, 65, 93-126. | 2.2 | 68        |
| 130 | Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid. Journal of<br>Analytical and Applied Pyrolysis, 2003, 70, 779-784.                                   | 2.6 | 155       |
| 131 | Following changes in the porous texture of Nomex-derived activated carbon fibres with the molecular probe technique. Microporous and Mesoporous Materials, 2003, 64, 11-19.              | 2.2 | 11        |
| 132 | Atomic vacancy-induced friction on the graphite surface: observation by lateral force microscopy.<br>Journal of Microscopy, 2003, 210, 119-124.                                          | 0.8 | 1         |
| 133 | Surface Characterization of PBO Fibers. Macromolecules, 2003, 36, 8662-8672.                                                                                                             | 2.2 | 26        |
| 134 | N2Physisorption on Carbon Nanotubes:Â Computer Simulation and Experimental Results. Journal of<br>Physical Chemistry B, 2003, 107, 8905-8916.                                            | 1.2 | 41        |
| 135 | Studies on the Thermal Degradation of Poly (p-phenylene benzobisoxazole). Chemistry of Materials, 2003, 15, 4052-4059.                                                                   | 3.2 | 63        |
| 136 | Detecting Surface Oxygen Groups on Carbon Nanofibers by Phase Contrast Imaging in Tapping Mode<br>AFM. Langmuir, 2003, 19, 7665-7668.                                                    | 1.6 | 11        |
| 137 | Methods for Characterization of Inorganic and Mineral Matter in Coal:  A Critical Overview. Energy<br>& Fuels, 2003, 17, 271-281.                                                        | 2.5 | 130       |
| 138 | A scanning tunnelling microscopy insight into the preparation of carbon molecular sieves by chemical vapour deposition. Journal of Materials Chemistry, 2003, 13, 1513-1516.             | 6.7 | 11        |
| 139 | Fibrous Carbon Molecular Sieves by Chemical Vapor Deposition of Benzene. Gas Separation Ability.<br>Chemistry of Materials, 2002, 14, 4328-4333.                                         | 3.2 | 29        |
| 140 | Nitrogen Physisorption on Defective C60. Journal of Physical Chemistry B, 2002, 106, 9522-9527.                                                                                          | 1.2 | 10        |
| 141 | Surface Characterization of PPTA Fibers Using Inverse Gas Chromatography. Macromolecules, 2002, 35, 5085-5096.                                                                           | 2.2 | 36        |
| 142 | Early Stages of Plasma Oxidation of Graphite:Â Nanoscale Physicochemical Changes As Detected by<br>Scanning Probe Microscopies. Langmuir, 2002, 18, 4314-4323.                           | 1.6 | 29        |
| 143 | Effect of sizing on the surface properties of carbon fibres. Journal of Materials Chemistry, 2002, 12, 3843-3850.                                                                        | 6.7 | 12        |
| 144 | High resolution imaging of functional group distributions on carbon surfaces by tapping mode atomic force microscopy. Chemical Communications, 2002, , 1790-1791.                        | 2.2 | 4         |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Preparation and porous texture characteristics of fibrous ultrahigh surface area carbons. Journal of<br>Materials Chemistry, 2002, 12, 3213-3219.                                                     | 6.7 | 27        |
| 146 | Adsorption of n-Alkanes on Plasma-Oxidized High-Strength Carbon Fibers. Journal of Colloid and Interface Science, 2002, 247, 290-302.                                                                 | 5.0 | 16        |
| 147 | Porous Texture Evolution in Nomex-Derived Activated Carbon Fibers. Journal of Colloid and Interface<br>Science, 2002, 252, 169-176.                                                                   | 5.0 | 39        |
| 148 | Carbon Molecular Sieves for Air Separation from Nomex Aramid Fibers. Journal of Colloid and<br>Interface Science, 2002, 254, 414-416.                                                                 | 5.0 | 16        |
| 149 | Characterization of synthetic carbons activated with phosphoric acid. Applied Surface Science, 2002, 200, 196-202.                                                                                    | 3.1 | 40        |
| 150 | Pyrolysis of apple pulp: effect of operation conditions and chemical additives. Journal of Analytical and Applied Pyrolysis, 2002, 62, 93-109.                                                        | 2.6 | 69        |
| 151 | Pyrolysis of apple pulp: chemical activation with phosphoric acid. Journal of Analytical and Applied Pyrolysis, 2002, 63, 283-301.                                                                    | 2.6 | 117       |
| 152 | Composition of gases released during olive stones pyrolysis. Journal of Analytical and Applied Pyrolysis, 2002, 65, 313-322.                                                                          | 2.6 | 122       |
| 153 | Adsorption of polar probe molecules on plasma-oxidised high-strength carbon fibres. Fuel Processing<br>Technology, 2002, 77-78, 359-364.                                                              | 3.7 | 16        |
| 154 | Beneficial effects of phosphoric acid as an additive in the preparation of activated carbon fibers from Nomex aramid fibers by physical activation. Fuel Processing Technology, 2002, 77-78, 237-244. | 3.7 | 15        |
| 155 | Characterization of porous texture in composite adsorbents based on exfoliated graphite and polyfurfuryl alcohol. Fuel Processing Technology, 2002, 77-78, 401-407.                                   | 3.7 | 13        |
| 156 | Nanometer structure of carbon fibers studied by different scanning probe microscopy techniques: a comparative investigation. Fuel Processing Technology, 2002, 77-78, 293-300.                        | 3.7 | 3         |
| 157 | A comparative study of the thermal decomposition of apple pulp in the absence and presence of phosphoric acid. Polymer Degradation and Stability, 2002, 75, 375-383.                                  | 2.7 | 50        |
| 158 | Inorganic matter characterization in vegetable biomass feedstocks1. Fuel, 2002, 81, 1161-1169.                                                                                                        | 3.4 | 67        |
| 159 | Retention of mercury in activated carbons in coal combustion and gasification flue gases. Fuel Processing Technology, 2002, 77-78, 353-358.                                                           | 3.7 | 60        |
| 160 | Oxygen plasma modification of submicron vapor grown carbon fibers as studied by scanning tunneling microscopy. Carbon, 2002, 40, 1101-1108.                                                           | 5.4 | 56        |
| 161 | Synthetic carbons activated with phosphoric acid. Carbon, 2002, 40, 1493-1505.                                                                                                                        | 5.4 | 483       |
| 162 | Synthetic carbons activated with phosphoric acid. Carbon, 2002, 40, 1507-1519.                                                                                                                        | 5.4 | 89        |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Characterization of aramid based activated carbon fibres by adsorption and immersion techniques.<br>Carbon, 2002, 40, 1376-1380.                                                             | 5.4 | 27        |
| 164 | Title is missing!. Magyar Apróvad Közlemények, 2002, 70, 37-43.                                                                                                                              | 1.4 | 24        |
| 165 | Characterization of Microporosity and Mesoporosity in Carbonaceous Materials by Scanning<br>Tunneling Microscopy. Langmuir, 2001, 17, 474-480.                                               | 1.6 | 32        |
| 166 | Effects of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibres. Composites Part A: Applied Science and Manufacturing, 2001, 32, 361-371.          | 3.8 | 131       |
| 167 | Atomic Force Microscopy and Infrared Spectroscopy Studies of the Thermal Degradation of Nomex<br>Aramid Fibers. Chemistry of Materials, 2001, 13, 4297-4304.                                 | 3.2 | 83        |
| 168 | Studies on pyrolysis of Nomex polyaramid fibers. Journal of Analytical and Applied Pyrolysis, 2001, 58-59, 105-115.                                                                          | 2.6 | 80        |
| 169 | Effects of plasma oxidation on the surface and interfacial properties of carbon fibres/polycarbonate composites. Carbon, 2001, 39, 1057-1068.                                                | 5.4 | 115       |
| 170 | Carbon reactivity in an oxygen plasma: a comparison with reactivity in molecular oxygen. Carbon, 2001, 39, 1135-1146.                                                                        | 5.4 | 28        |
| 171 | Triangular versus honeycomb structure in atomic-resolution STM images of graphite. Carbon, 2001, 39, 476-479.                                                                                | 5.4 | 20        |
| 172 | Surface characterization of submicron vapor grown carbon fibers by scanning tunneling microscopy.<br>Carbon, 2001, 39, 1575-1587.                                                            | 5.4 | 18        |
| 173 | Porous texture of activated carbons prepared by phosphoric acid activation of apple pulp. Carbon, 2001, 39, 1111-1115.                                                                       | 5.4 | 52        |
| 174 | Introduction of acidic groups at the surface of activated carbon by microwave-induced oxygen plasma at low pressure. Carbon, 2000, 38, 1021-1029.                                            | 5.4 | 71        |
| 175 | Comparative study of the air and oxygen plasma oxidation of highly oriented pyrolytic graphite: a scanning tunneling and atomic force microscopy investigation. Carbon, 2000, 38, 1183-1197. | 5.4 | 59        |
| 176 | Recent developments in the international scenario of coal science. Fuel, 2000, 79, 1581-1586.                                                                                                | 3.4 | 2         |
| 177 | The international scenario of coal science. Fuel, 2000, 79, 461-469.                                                                                                                         | 3.4 | 3         |
| 178 | Adhesion artefacts in atomic force microscopy imaging. Journal of Microscopy, 2000, 200, 109-113.                                                                                            | 0.8 | 17        |
| 179 | Effect of some precursor characteristics on the porous texture of activated carbon fibres prepared from Nomex aramid fibres. Microporous and Mesoporous Materials, 2000, 41, 319-321.        | 2.2 | 18        |
| 180 | Microporous texture of activated carbon fibres prepared from Nomex aramid fibres. Microporous and Mesoporous Materials, 2000, 34, 171-179.                                                   | 2.2 | 51        |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Mineralogical and chemical characterisation of coals from Southern Chile. International Journal of<br>Coal Geology, 2000, 44, 85-94.                                                            | 1.9 | 13        |
| 182 | Atomic force microscopy investigation of the surface modification of highly oriented pyrolytic graphite by oxygen plasma. Journal of Materials Chemistry, 2000, 10, 1585-1591.                  | 6.7 | 41        |
| 183 | Physisorption of Simple Gases on C60Fullerene. Langmuir, 2000, 16, 1343-1348.                                                                                                                   | 1.6 | 25        |
| 184 | Shrinkage Properties of Wool Treated with Low Temperature Plasma and Chitosan Biopolymer. Textile<br>Reseach Journal, 1999, 69, 811-815.                                                        | 1.1 | 71        |
| 185 | Modification of the surface properties of an activated carbon by oxygen plasma treatment. Fuel, 1998, 77, 613-624.                                                                              | 3.4 | 71        |
| 186 | Effect of Various Treatments on Carbon Fiber Surfaces Studied by Raman Microprobe Spectrometry.<br>Applied Spectroscopy, 1998, 52, 356-360.                                                     | 1.2 | 31        |
| 187 | Fullerene Reactivity in an Oxygen Plasma. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5,<br>1075-1081.                                                                              | 0.6 | 1         |
| 188 | Thermal behaviour of extrographic fractions of coal tar and petroleum pitches. Fuel, 1997, 76, 179-187.                                                                                         | 3.4 | 21        |
| 189 | Microporous texture of activated carbon fibers prepared from aramid fiber pulp. Microporous<br>Materials, 1997, 11, 303-311.                                                                    | 1.6 | 37        |
| 190 | Interactions between organic matter and minerals in two bituminous coals of different rank.<br>International Journal of Coal Geology, 1997, 33, 369-386.                                        | 1.9 | 21        |
| 191 | Zeta Potential as a Tool to Characterize Plasma Oxidation of Carbon Fibers. Journal of Colloid and<br>Interface Science, 1997, 192, 363-367.                                                    | 5.0 | 51        |
| 192 | Chemical transformations resulting from pyrolysis and CO2 activation of Kevlar flocks. Carbon, 1997, 35, 967-976.                                                                               | 5.4 | 29        |
| 193 | Thermal behavior of fullerenes in different gas atmospheres. Carbon, 1996, 34, 1239-1248.                                                                                                       | 5.4 | 14        |
| 194 | Characterization of precipitates formed from the tetraiodomercurate (II) anion and mercury(I) or silver(I) cations. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1217-1221. | 1.7 | 1         |
| 195 | Comparative analysis of pitches by extrography and thermal analysis techniques. Carbon, 1994, 32, 1001-1010.                                                                                    | 5.4 | 20        |
| 196 | Raman microprobe studies on carbon materials. Carbon, 1994, 32, 1523-1532.                                                                                                                      | 5.4 | 1,072     |
| 197 | Characterization of common lignite, xylitic lignite and pyropissite varieties of low-rank coals. Fuel, 1994, 73, 1723-1728.                                                                     | 3.4 | 5         |
| 198 | Thermal Transformations of Kevlar Aramid Fibers During Pyrolysis: Infrared and Thermal Analysis Studies. Chemistry of Materials, 1994, 6, 1918-1924.                                            | 3.2 | 87        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Comparative Mössbauer study of the effects of natural weathering and artificial oxidation on iron minerals present in coal. Nuclear Instruments & Methods in Physics Research B, 1993, 76, 191-194. | 0.6 | 9         |
| 200 | Correlation between Arrhenius kinetic parameters in the reaction of different carbon materials with oxygen. Energy & Fuels, 1993, 7, 1141-1145.                                                     | 2.5 | 23        |
| 201 | Mössbauer study of the effect of acidic treatment on iron minerals during the demineralization of coals. Hyperfine Interactions, 1992, 71, 1403-1406.                                               | 0.2 | 3         |
| 202 | Thermoanalytical studies of pitch pyrolysis. Journal of Thermal Analysis, 1992, 38, 811-819.                                                                                                        | 0.7 | 15        |
| 203 | Mineral matter in coals of different rank from the Asturian Central basin. Fuel, 1992, 71, 367-372.                                                                                                 | 3.4 | 33        |
| 204 | Nature and mechanism of oxidation reactions occurring during coal chlorination. Fuel, 1992, 71, 389-393.                                                                                            | 3.4 | 1         |
| 205 | Suitability of thermogravimetry and differential thermal analysis techniques for characterization of pitches. Fuel, 1992, 71, 611-617.                                                              | 3.4 | 34        |
| 206 | Organic affinity of trace elements in Asturian bituminous coals. Fuel, 1992, 71, 909-917.                                                                                                           | 3.4 | 31        |
| 207 | Influence of weathering process on the flotation response of coal. Fuel, 1991, 70, 1391-1397.                                                                                                       | 3.4 | 20        |
| 208 | The Determining Role of Mineral Matter on Gasification Reactivities of Brown Coal Chars. , 1991, , 435-460.                                                                                         |     | 10        |
| 209 | Comparative Mössbauer study of the oxidation of pyrite under different conditions. Hyperfine<br>Interactions, 1990, 58, 2581-2587.                                                                  | 0.2 | 8         |
| 210 | Interactions between carboxyl groups and inorganic elements in Spanish brown coals. Fuel, 1990, 69, 362-367.                                                                                        | 3.4 | 22        |
| 211 | Influence of coal chlorination conditions on aliphatic/aromatic selectivity. Fuel, 1990, 69, 867-872.                                                                                               | 3.4 | 7         |
| 212 | The characterization of organomineral components of low-rank coals. Fuel Processing Technology, 1990, 25, 81-87.                                                                                    | 3.7 | 13        |
| 213 | Structure and catalytic properties of silica-supported Mo-Pr oxide catalysts for propene selective oxidation. Journal of Materials Science, 1990, 25, 289-295.                                      | 1.7 | 1         |
| 214 | Reactions of coal mineral matter during coal chlorination. Fuel, 1990, 69, 873-877.                                                                                                                 | 3.4 | 6         |
| 215 | Structure and Reactivity of Perovskite-Type Oxides. Advances in Catalysis, 1989, , 237-328.                                                                                                         | 0.1 | 358       |
| 216 | XPS characterization of coal surfaces: Study of aerial oxidation of brown coals. Surface and Interface Analysis, 1988, 12, 565-571.                                                                 | 0.8 | 37        |

Juan M D Tascon

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | A comparative study of the interactions of NO and CO with LaCrO3. Journal of Molecular Catalysis, 1988, 45, 355-363.                                                                                              | 1.2 | 8         |
| 218 | A comparative thermoanalytical study of low-temperature reactivity of brown coal with dioxygen and radiofrequency-activated oxygen. Thermochimica Acta, 1988, 134, 333-338.                                       | 1.2 | 7         |
| 219 | Isobutene oxidation on an catalyst. Journal of the Less Common Metals, 1988, 138, 47-57.                                                                                                                          | 0.9 | 8         |
| 220 | Temperature-programmed desorption study of the interactions of H2, CO and CO2 with LaMnO3.<br>Journal of the Chemical Society Faraday Transactions I, 1987, 83, 3149.                                             | 1.0 | 21        |
| 221 | Selective oxidation of propene on a molybdenum-prasedodymium-bismuth catalyst. Industrial &<br>Engineering Chemistry Research, 1987, 26, 1419-1424.                                                               | 1.8 | 23        |
| 222 | A study of NO and CO interactions with LaMnO3. Journal of Colloid and Interface Science, 1987, 119, 100-107.                                                                                                      | 5.0 | 28        |
| 223 | A comparison of various characterization techniques for low-temperature oxidation of coal. Fuel<br>Processing Technology, 1987, 15, 245-256.                                                                      | 3.7 | 19        |
| 224 | AEM, XPS and ISS characterization of catalyst modifications during propene oxidation over a supported mixed oxide catalyst. Surface and Interface Analysis, 1986, 9, 207-213.                                     | 0.8 | 3         |
| 225 | Catalytic synergy between MoO3 and BiPO4 in N-ethyl formamide dehydration I. Catalytic properties, reducibility, and reoxidizability of mixtures of MoO3 and BiPO4. Journal of Catalysis, 1986, 97, 287-299.      | 3.1 | 26        |
| 226 | Catalytic synergy between MoO3 and BiPO4 in N-ethyl formamide dehydration II. Characterization of mixtures of MoO3 and BiPO4. Journal of Catalysis, 1986, 97, 300-311.                                            | 3.1 | 26        |
| 227 | Catalytic synergy between MoO3 and BiPO4 in N-ethyl formamide dehydration III. An ESR study of reduction properties of the mixtures of MoO3 and BiPO4. Journal of Catalysis, 1986, 97, 312-320.                   | 3.1 | 18        |
| 228 | Interactions of CO and NO with the perovskiteâ€ŧype oxide larho <sub>3</sub> . Journal of Chemical<br>Technology and Biotechnology, 1986, 36, 136-143.                                                            | 1.6 | 3         |
| 229 | Surface interactions of NO and CO with LaMO3 oxides. Journal of Catalysis, 1985, 95, 558-566.                                                                                                                     | 3.1 | 53        |
| 230 | Enhanced O2 adsorption in the catalytic oxidation of isobutene on a supported Moî—,Uî—,O catalyst.<br>Journal of Colloid and Interface Science, 1985, 106, 269-272.                                               | 5.0 | 2         |
| 231 | Physicochemical properties of LaFeO3. Kinetics of reduction and of oxygen adsorption. Journal of the<br>Chemical Society Faraday Transactions I, 1985, 81, 2399.                                                  | 1.0 | 29        |
| 232 | Chemisorption and catalysis on LaMO3 oxides. Journal of the Chemical Society Faraday Transactions I, 1985, 81, 939.                                                                                               | 1.0 | 115       |
| 233 | Infrared spectroscopic study of the adsorption of pyridine, carbon monoxide and carbon dioxide on<br>the perovskite-type oxides LaMO3. Journal of the Chemical Society Faraday Transactions I, 1984, 80,<br>1089. | 1.0 | 43        |
| 234 | Adsorption of CO2 on the perovskite-type oxide LaCoO3. Journal of the Chemical Society Faraday<br>Transactions I, 1981, 77, 591.                                                                                  | 1.0 | 49        |

| #   | Article                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Porosity Development in Carbon Nanofibers by Physical and Chemical Activation. Journal of Nano<br>Research, 0, 17, 211-227. | 0.8 | 6         |