Takafumi Ueno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2021282/publications.pdf Version: 2024-02-01

		87888	118850
112	4,192	38	62
papers	citations	h-index	g-index
132	132	132	3358
all docs	docs citations	times ranked	citing authors

TAKAELIMI LIENO

#	Article	IF	CITATIONS
1	Dynamic Behavior of Cargo Proteins Regulated by Linker Peptides on a Protein Needle Scaffold. Chemistry Letters, 2022, 51, 73-76.	1.3	2
2	Importance of the Subunit–Subunit Interface in Ferritin Disassembly: A Molecular Dynamics Study. Langmuir, 2022, 38, 1106-1113.	3.5	6
3	Engineering of protein crystals for use as solid biomaterials. Biomaterials Science, 2022, 10, 354-367.	5.4	17
4	Protein Needles Designed to Selfâ€Assemble through Needle Tip Engineering. Small, 2022, 18, e2106401.	10.0	8
5	Controlled Uptake of an Iridium Complex inside Engineered apoâ€Ferritin Nanocages: Study of Structure and Catalysis**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
6	Design of a gold clustering site in an engineered apo-ferritin cage. Communications Chemistry, 2022, 5,	4.5	5
7	Artificial metalloenzymes based on protein assembly. Coordination Chemistry Reviews, 2022, 469, 214593.	18.8	9
8	Construction of Multistep Catalytic Systems in Protein Assemblies. Fundamental Biomedical Technologies, 2021, , 29-44.	0.2	0
9	<i>In-Cell</i> Engineering of Protein Crystals with Nanoporous Structures for Promoting Cascade Reactions. ACS Applied Nano Materials, 2021, 4, 1672-1681.	5.0	21
10	The Versatile Manipulations of Self-Assembled Proteins in Vaccine Design. International Journal of Molecular Sciences, 2021, 22, 1934.	4.1	23
11	Design of an Inâ€Cell Protein Crystal for the Environmentally Responsive Construction of a Supramolecular Filament. Angewandte Chemie - International Edition, 2021, 60, 12341-12345.	13.8	13
12	Design of an Inâ€Cell Protein Crystal for the Environmentally Responsive Construction of a Supramolecular Filament. Angewandte Chemie, 2021, 133, 12449-12453.	2.0	0
13	Single-molecule level dynamic observation of disassembly of the apo-ferritin cage in solution. Physical Chemistry Chemical Physics, 2020, 22, 18562-18572.	2.8	14
14	Design of Multinuclear Gold Binding Site at the Two-fold Symmetric Interface of the Ferritin Cage. Chemistry Letters, 2020, 49, 840-844.	1.3	7
15	Dynamic behavior of an artificial protein needle contacting a membrane observed by high-speed atomic force microscopy. Nanoscale, 2020, 12, 8166-8173.	5.6	6
16	Site-Selective Protein Chemical Modification of Exposed Tyrosine Residues Using Tyrosine Click Reaction. Bioconjugate Chemistry, 2020, 31, 1417-1424.	3.6	53
17	Engineering of protein crystals for development of bionanomaterials. Japanese Journal of Applied Physics, 2019, 58, SI0802.	1.5	7
18	Construction of supramolecular nanotubes from protein crystals. Chemical Science, 2019, 10, 1046-1051.	7.4	30

#	Article	lF	CITATIONS
19	Recent progresses in the accumulation of metal ions into the apo-ferritin cage: Experimental and theoretical perspectives. Polyhedron, 2019, 172, 104-111.	2.2	12
20	Coordination design of cadmium ions at the 4-fold axis channel of the apo-ferritin cage. Dalton Transactions, 2019, 48, 9759-9764.	3.3	9
21	Tailoring Organometallic Complexes into Protein Scaffolds. , 2019, , 329-346.		1
22	Encapsulation of biomacromolecules by soaking and co-crystallization into porous protein crystals of hemocyanin. Biochemical and Biophysical Research Communications, 2019, 509, 577-584.	2.1	13
23	Supramolecular protein cages constructed from a crystalline protein matrix. Chemical Communications, 2018, 54, 1988-1991.	4.1	10
24	Photocatalytic hydrogen evolution systems constructed in cross-linked porous protein crystals. Applied Catalysis B: Environmental, 2018, 237, 1124-1129.	20.2	19
25	Engineering of protein assemblies within cells. Current Opinion in Structural Biology, 2018, 51, 1-8.	5.7	14
26	Functionalization of protein crystals with metal ions, complexes and nanoparticles. Current Opinion in Chemical Biology, 2018, 43, 68-76.	6.1	28
27	Structure of in cell protein crystals containing organometallic complexes. Physical Chemistry Chemical Physics, 2018, 20, 2986-2989.	2.8	5
28	Artificial bio-nanomachines based on protein needles derived from bacteriophage T4. Biophysical Reviews, 2018, 10, 641-658.	3.2	4
29	Raman spectroscopy insight into Norovirus encapsulation in Bombyx mori cypovirus cubic microcrystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 19-30.	3.9	3
30	Improved efficiency of nanoneedle insertion by modification with a cell-puncturing protein. Japanese Journal of Applied Physics, 2018, 57, 03EB02.	1.5	1
31	Photoinduced inâ€Vivo Magnetic Resonance Imaging (MRI) with Rapid CO Release from an MnCOâ€Protein Needle Composite. Chemistry - A European Journal, 2018, 24, 11578-11583.	3.3	3
32	Crystal Engineering of Self-Assembled Porous Protein Materials in Living Cells. ACS Nano, 2017, 11, 2410-2419.	14.6	53
33	Observation of gold sub-nanocluster nucleation within a crystalline protein cage. Nature Communications, 2017, 8, 14820.	12.8	93
34	Design of Bioinorganic Materials at the Interface of Coordination and Biosupramolecular Chemistry. Chemical Record, 2017, 17, 383-398.	5.8	5
35	Development of Bio-Hybrid Materials by Design of Supramolecular Protein Assemblies. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1264-1273.	0.1	0
36	A Photoactive Carbonâ€Monoxideâ€Releasing Protein Cage for Doseâ€Regulated Delivery in Living Cells. Angewandte Chemie - International Edition, 2016, 55, 1056-1060.	13.8	71

Τακαγυμί Πενο

#	Article	IF	CITATIONS
37	Photoactivatable CO release from engineered protein crystals to modulate NF-κB activation. Chemical Communications, 2016, 52, 4545-4548.	4.1	28
38	A Photoactive Carbonâ€Monoxideâ€Releasing Protein Cage for Doseâ€Regulated Delivery in Living Cells. Angewandte Chemie, 2016, 128, 1068-1072.	2.0	6
39	Design of a confined environment using protein cages and crystals for the development of biohybrid materials. Chemical Communications, 2016, 52, 6496-6512.	4.1	56
40	Immobilization of two organometallic complexes into a single cage to construct protein-based microcompartments. Chemical Communications, 2016, 52, 5463-5466.	4.1	29
41	Design of a CO-releasing Extracellular Scaffold Using in Vivo Protein Crystals. Chemistry Letters, 2015, 44, 342-344.	1.3	21
42	Surface Functionalization of Protein Crystals with Carbohydrate Using Site-selective Bioconjugation. Chemistry Letters, 2015, 44, 29-31.	1.3	6
43	Design of Enzymeâ€Encapsulated Protein Containers by In Vivo Crystal Engineering. Advanced Materials, 2015, 27, 7951-7956.	21.0	32
44	Modulation of Cellular Functions by Protein Needles. Seibutsu Butsuri, 2015, 55, 089-091.	0.1	0
45	Protein Needles as Molecular Templates for Artificial Metalloenzymes. Israel Journal of Chemistry, 2015, 55, 40-50.	2.3	10
46	Use of the confined spaces of apo-ferritin and virus capsids as nanoreactors for catalytic reactions. Current Opinion in Chemical Biology, 2015, 25, 88-97.	6.1	83
47	Design of biomaterials for intracellular delivery of carbon monoxide. Biomaterials Science, 2015, 3, 1423-1438.	5.4	61
48	Design of protein crystals in the development of solid biomaterials. RSC Advances, 2015, 5, 21366-21375.	3.6	55
49	Construction of an enterobactin analogue with symmetrically arranged monomer subunits of ferritin. Chemical Communications, 2015, 51, 16609-16612.	4.1	7
50	A metal carbonyl–protein needle composite designed for intracellular CO delivery to modulate NF-κB activity. Molecular BioSystems, 2015, 11, 3111-3118.	2.9	16
51	Preparation of a Cross-Linked Porous Protein Crystal Containing Ru Carbonyl Complexes as a CO-Releasing Extracellular Scaffold. Inorganic Chemistry, 2015, 54, 215-220.	4.0	72
52	Porous Protein Crystals as Catalytic Vessels for Organometallic Complexes. Chemistry - an Asian Journal, 2014, 9, 1373-1378.	3.3	47
53	Intracellular CO Release from Composite of Ferritin and Ruthenium Carbonyl Complexes. Journal of the American Chemical Society, 2014, 136, 16902-16908.	13.7	89
54	Plasma membrane translocation of a protein needle based on a triple-stranded β-helix motif. Molecular BioSystems, 2014, 10, 2677.	2.9	10

#	Article	IF	CITATIONS
55	Intracellular Protein Delivery System with Protein Needle–GFP Construct. Chemistry Letters, 2014, 43, 1505-1507.	1.3	10
56	Coordination Chemistry in Protein Cages. Principles, Design and Applications. Herausgegeben von Takafumi Ueno und Yoshihito Watanabe Angewandte Chemie, 2014, 126, 1503-1504.	2.0	0
57	Inorganic Design of Protein Assemblies as Supramolecular Platforms. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 50-60.	3.7	2
58	Expanding coordination chemistry from protein to protein assembly. Chemical Communications, 2013, 49, 4114-4126.	4.1	49
59	Artificial Metalloenzymes Constructed From Hierarchicallyâ€Assembled Proteins. Chemistry - an Asian Journal, 2013, 8, 1646-1660.	3.3	41
60	Porous Protein Crystals as Reaction Vessels. Chemistry - A European Journal, 2013, 19, 9096-9102.	3.3	53
61	Coordination Chemistry in Self-Assembly Proteins. Springer Briefs in Molecular Science, 2013, , 61-68.	0.1	0
62	Molecular Design of Protein Crystals as a Reaction Vessels for Observation of Chemical Reactions. Nihon Kessho Gakkaishi, 2013, 55, 81-85.	0.0	0
63	Palladium, Coordination of Organometallic Complexes in Apoferritin. , 2013, , 1641-1648.		0
64	Semi-synthesis of an artificial scandium(iii) enzyme with a β-helical bio-nanotube. Dalton Transactions, 2012, 41, 11424.	3.3	26
65	Catalytic Mechanism in Artificial Metalloenzyme: QM/MM Study of Phenylacetylene Polymerization by Rhodium Complex Encapsulated in <i>apo</i> -Ferritin. Journal of the American Chemical Society, 2012, 134, 15418-15429.	13.7	51
66	Stability and Activity of Enzymes in Ionic Liquids. , 2012, , 235-273.		0
67	Porous Protein Crystals as Reaction Vessels for Controlling Magnetic Properties of Nanoparticles. Small, 2012, 8, 1314-1319.	10.0	50
68	Dual modification of a triple-stranded β-helix nanotube with Ru and Re metal complexes to promote photocatalytic reduction of CO2. Chemical Communications, 2011, 47, 2074.	4.1	37
69	Incorporation of organometallic Ru complexes into apo-ferritin cage. Dalton Transactions, 2011, 40, 2190-2195.	3.3	59
70	Definite coordination arrangement of organometallic palladium complexes accumulated on the designed interior surface of apo-ferritin. Chemical Communications, 2011, 47, 170-172.	4.1	34
71	Postâ€Crystal Engineering of Zincâ€Substituted Myoglobin to Construct a Longâ€Lived Photoinduced Chargeâ€Separation System. Angewandte Chemie - International Edition, 2011, 50, 4849-4852.	13.8	58
72	Elucidation of Metalâ€lon Accumulation Induced by Hydrogen Bonds on Protein Surfaces by Using Porous Lysozyme Crystals Containing Rh ^{III} Ions as the Model Surfaces. Chemistry - A European Journal, 2010, 16, 2730-2740.	3.3	38

#	Article	IF	CITATIONS
73	An Engineered Metalloprotein as a Functional and Structural Bioinorganic Model System. Angewandte Chemie - International Edition, 2010, 49, 3868-3869.	13.8	12
74	Construction of Robust Bioâ€nanotubes using the Controlled Selfâ€Assembly of Component Proteins of Bacteriophage T4. Small, 2010, 6, 1873-1879.	10.0	41
75	Mechanism of Accumulation and Incorporation of Organometallic Pd Complexes into the Protein Nanocage of apo-Ferritin. Inorganic Chemistry, 2010, 49, 6967-6973.	4.0	43
76	Modification of Porous Protein Crystals in Development of Biohybrid Materials. Bioconjugate Chemistry, 2010, 21, 264-269.	3.6	34
77	Process of Accumulation of Metal Ions on the Interior Surface of apo-Ferritin: Crystal Structures of a Series of apo-Ferritins Containing Variable Quantities of Pd(II) Ions. Journal of the American Chemical Society, 2009, 131, 5094-5100.	13.7	88
78	Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in Apo-ferritin. Chemical Communications, 2009, , 4871.	4.1	92
79	Polymerization of Phenylacetylene by Rhodium Complexes within a Discrete Space of apo-Ferritin. Journal of the American Chemical Society, 2009, 131, 6958-6960.	13.7	165
80	Construction of an energy transfer system in the bio-nanocup space by heteromeric assembly of gp27 and gp5 proteins isolated from bacteriophage T4. Organic and Biomolecular Chemistry, 2009, 7, 2649.	2.8	11
81	Artificial Metalloproteins Exploiting Vacant Space: Preparation, Structures, and Functions. Topics in Organometallic Chemistry, 2009, , 25-43.	0.7	26
82	Molecular Design of Heteroprotein Assemblies Providing a Bionanocup as a Chemical Reactor. Small, 2008, 4, 50-54.	10.0	25
83	Control of the Coordination Structure of Organometallic Palladium Complexes in an apo-Ferritin Cage. Journal of the American Chemical Society, 2008, 130, 10512-10514.	13.7	127
84	Functionalization of viral protein assemblies by self-assembly reactions. Journal of Materials Chemistry, 2008, 18, 3741.	6.7	22
85	Noncovalent insertion of ferrocenes into the protein shell of apo-ferritin. Chemical Communications, 2008, , 6519.	4.1	34
86	Ligand design for the improvement of stability of metal complex·protein hybrids. Chemical Communications, 2008, , 229-231.	4.1	18
87	Design of Protein Scaffolds for Chemical Reactions Catalyzed by Metal Complexes and Nanoparticles. Bulletin of Japan Society of Coordination Chemistry, 2008, 51, 20-30.	0.2	0
88	Reactivities of Oxo and Peroxo Intermediates Studied by Hemoprotein Mutants. Accounts of Chemical Research, 2007, 40, 554-562.	15.6	129
89	Incorporation of a Phebox Rhodium Complex into apo-Myoglobin Affords a Stable Organometallic Protein Showing Unprecedented Arrangement of the Complex in the Cavity. Organometallics, 2007, 26, 4904-4908.	2.3	33
90	Design and Structure Analysis of Artificial Metalloproteins:  Selective Coordination of His64 to Copper Complexes with Square-Planar Structure in the apo-Myoglobin Scaffold. Inorganic Chemistry, 2007, 46, 5137-5139.	4.0	33

#	Article	IF	CITATIONS
91	Design of artificial metalloenzymes using non-covalent insertion of a metal complex into a protein scaffold. Journal of Organometallic Chemistry, 2007, 692, 142-147.	1.8	65
92	Crystal structure based design of functional metal/protein hybrids. Journal of Inorganic Biochemistry, 2007, 101, 1667-1675.	3.5	18
93	Bionanotube Tetrapod Assembly by In Situ Synthesis of a Cold Nanocluster with (Gp5–His6)3 from Bacteriophage T4. Angewandte Chemie - International Edition, 2006, 45, 4508-4512.	13.8	37
94	Design of metal cofactors activated by a protein-protein electron transfer system. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9416-9421.	7.1	41
95	Monooxygenation of an Aromatic Ring by F43W/H64D/V68I Myoglobin Mutant and Hydrogen Peroxide. Journal of Biological Chemistry, 2005, 280, 12858-12866.	3.4	29
96	A Virus-Based Nanoblock with Tunable Electrostatic Properties. Nano Letters, 2005, 5, 597-602.	9.1	74
97	Coordinated Design of Cofactor and Active Site Structures in Development of New Protein Catalysts. Journal of the American Chemical Society, 2005, 127, 6556-6562.	13.7	171
98	Catalase Reaction by Myoglobin Mutants and Native Catalase. Journal of Biological Chemistry, 2004, 279, 52376-52381.	3.4	48
99	Molecular engineering of cytochrome P450 and myoglobin for selective oxygenations. Journal of Porphyrins and Phthalocyanines, 2004, 08, 279-289.	0.8	11
100	Size-Selective Olefin Hydrogenation by a Pd Nanocluster Provided in an Apo-Ferritin Cage. Angewandte Chemie - International Edition, 2004, 43, 2527-2530.	13.8	321
101	Crystal Structures of Artificial Metalloproteins:Â Tight Binding of FeIII(Schiff-Base) by Mutation of Ala71 to Gly in Apo-Myoglobin. Inorganic Chemistry, 2004, 43, 2852-2858.	4.0	102
102	Title is missing!. Angewandte Chemie, 2003, 115, 1035-1038.	2.0	60
103	Preparation of Artificial Metalloenzymes by Insertion of Chromium(III) Schiff Base Complexes into Apomyoglobin Mutants. Angewandte Chemie - International Edition, 2003, 42, 1005-1008.	13.8	223
104	Molecular Engineering of Myoglobin:Â Influence of Residue 68 on the Rate and the Enantioselectivity of Oxidation Reactions Catalyzed by H64D/V68X Myoglobinâ€. Biochemistry, 2003, 42, 10174-10181.	2.5	31
105	Introduction of P450, Peroxidase, and Catalase Activities into Myoglobin by Site-Directed Mutagenesis: Diverse Reactivities of Compound I. Bulletin of the Chemical Society of Japan, 2003, 76, 1309-1322.	3.2	39
106	Asymmetric Sulfoxidation and Amine Binding by H64D/V68A and H64D/V68S Mb:  Mechanistic Insight into the Chiral Discrimination Step. Journal of the American Chemical Society, 2002, 124, 8506-8507.	13.7	40
107	Oxidative Modification of Tryptophan 43 in the Heme Vicinity of the F43W/H64L Myoglobin Mutant. Journal of Biological Chemistry, 2001, 276, 36067-36070.	3.4	36
108	Protection of Proton-Initiated Ligand Dissociation from Hg(II) Complexes with Bulky Cholyl Amide Arenethiolate by NH···S Hydrogen Bonding in an Aqueous Micellar Solution. Inorganic Chemistry, 1999, 38, 4028-4031.	4.0	12

Τακαγυμί Πένο

#	Article	IF	CITATIONS
109	pKa shift by NHâ⊂S hydrogen bond in the hair-pin turn structure of Cys-containing oligopeptides. , 1999, , 288-290.		0
110	Regulation of electrochemical properties of Fe(II) and Fe(III) thiolate complexes by hydrogen bonding with diamide additive. Reactive and Functional Polymers, 1998, 37, 225-233.	4.1	0
111	19F NMR investigations of cobalt(II) complexes with cysteine-containing peptide ligands. Magnetic Resonance in Chemistry, 1995, 33, 174-177.	1.9	5
112	Controlled Uptake of an Iridium Complex inside Engineered apoâ€Ferritin Nanocages: Study of Structure and Catalysis**. Angewandte Chemie, 0, , .	2.0	1