Johannes Schumacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2020618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elucidation of the genetic causes of bicuspid aortic valve disease. Cardiovascular Research, 2023, 119, 857-866.	3.8	11
2	Multitrait genetic association analysis identifies 50 new risk loci for gastro-oesophageal reflux, seven new loci for Barrett's oesophagus and provides insights into clinical heterogeneity in reflux diagnosis. Gut, 2022, 71, 1053-1061.	12.1	74
3	Clinical Relevance of Gastroesophageal Cancer Associated SNPs for Oncologic Outcome After Curative Surgery. Annals of Surgical Oncology, 2022, 29, 1453-1462.	1.5	2
4	Predictors of suicidal ideation in social anxiety disorder – evidence for the validity of the Interpersonal Theory of Suicide. Journal of Affective Disorders, 2022, 298, 400-407.	4.1	4
5	Social anxiety disorder with comorbid major depression – why fearful attachment style is relevant. Journal of Psychiatric Research, 2022, 147, 283-290.	3.1	6
6	Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression. Molecular Psychiatry, 2021, 26, 4179-4190.	7.9	58
7	Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 2021, 26, 3004-3017.	7.9	56
8	Germline variation in the insulin-like growth factor pathway and risk of Barrett's esophagus and esophageal adenocarcinoma. Carcinogenesis, 2021, 42, 369-377.	2.8	11
9	A comprehensive re-assessment of the association between vitamin D and cancer susceptibility using Mendelian randomization. Nature Communications, 2021, 12, 246.	12.8	39
10	Significance of anger suppression and preoccupied attachment in social anxiety disorder: a cross-sectional study. BMC Psychiatry, 2021, 21, 116.	2.6	9
11	An autoimmune disease risk variant: A trans master regulatory effect mediated by IRF1 under immune stimulation?. PLoS Genetics, 2021, 17, e1009684.	3.5	17
12	Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals. Human Genetics and Genomics Advances, 2021, 2, 100041.	1.7	6
13	ASO Visual Abstract: Clinical Relevance of Gastroesophageal Cancer-Associated Single Nucleotide Polymorphisms for Oncologic Outcome After CurativeSurgery. Annals of Surgical Oncology, 2021, 28, 744-745.	1.5	0
14	Different Prevalence of Alarm, Dyspeptic and Reflux Symptoms in Patients with Cardia and Non-cardia Gastric Cancer. Journal of Gastrointestinal and Liver Diseases, 2021, , .	0.9	2
15	Gastric cancer in autoimmune gastritis: A caseâ€control study from the German centers of the staR project on gastric cancer research. United European Gastroenterology Journal, 2020, 8, 175-184.	3.8	30
16	Sex-Specific Genetic Associations for Barrett's Esophagus and Esophageal Adenocarcinoma. Gastroenterology, 2020, 159, 2065-2076.e1.	1.3	16
17	Shared Genetic Etiology of Obesity-Related Traits and Barrett's Esophagus/Adenocarcinoma: Insights from Genome-Wide Association Studies. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 427-433.	2.5	7
18	Human exome and mouse embryonic expression data implicate ZFHX3, TRPS1, and CHD7 in human esophageal atresia. PLoS ONE, 2020, 15, e0234246.	2.5	9

#	Article	IF	CITATIONS
19	Whole-exome sequencing of 81 individuals from 27 multiply affected bipolar disorder families. Translational Psychiatry, 2020, 10, 57.	4.8	23
20	Title is missing!. , 2020, 15, e0234246.		0
21	Title is missing!. , 2020, 15, e0234246.		0
22	Title is missing!. , 2020, 15, e0234246.		0
23	Title is missing!. , 2020, 15, e0234246.		0
24	Title is missing!. , 2020, 15, e0234246.		0
25	Title is missing!. , 2020, 15, e0234246.		0
26	Gastroesophageal reflux GWAS identifies risk loci that also associate with subsequent severe esophageal diseases. Nature Communications, 2019, 10, 4219.	12.8	58
27	No Association Between Vitamin D Status and Risk of Barrett's Esophagus or Esophageal Adenocarcinoma: A Mendelian Randomization Study. Clinical Gastroenterology and Hepatology, 2019, 17, 2227-2235.e1.	4.4	16
28	First genotypeâ€phenotype study reveals HLAâ€DQβ1 insertion heterogeneity in highâ€resolution manometry achalasia subtypes. United European Gastroenterology Journal, 2019, 7, 45-51.	3.8	5
29	Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 2019, 9, 77.	4.8	82
30	Identification of loci of functional relevance to Barrett's esophagus and esophageal adenocarcinoma: Cross-referencing of expression quantitative trait loci data from disease-relevant tissues with genetic association data. PLoS ONE, 2019, 14, e0227072.	2.5	5
31	Characterization of esophageal inflammation in patients with achalasia. A retrospective immunohistochemical study. Human Pathology, 2019, 85, 228-234.	2.0	8
32	Childhood adversities, bonding, and personality in social anxiety disorder with alcohol use disorder. Psychiatry Research, 2018, 262, 295-302.	3.3	11
33	Esophageal Atresia with or without Tracheoesophageal Fistula (EA/TEF): Association of Different EA/TEF Subtypes with Specific Co-occurring Congenital Anomalies and Implications for Diagnostic Workup. European Journal of Pediatric Surgery, 2018, 28, 176-182.	1.3	14
34	Evidence for <i><scp>PTGER</scp>4</i> , <i><scp>PSCA</scp>,</i> and <i><scp>MBOAT</scp>7</i> as risk genes for gastric cancer on the genome and transcriptome level. Cancer Medicine, 2018, 7, 5057-5065.	2.8	22
35	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
36	Quality of Life after Surgical Treatment for Esophageal Atresia: Long-Term Outcome of 154 Patients. European Journal of Pediatric Surgery, 2017, 27, 443-448.	1.3	19

JOHANNES SCHUMACHER

#	Article	IF	CITATIONS
37	ISL1 is a major susceptibility gene for classic bladder exstrophy and a regulator of urinary tract development. Scientific Reports, 2017, 7, 42170.	3.3	41
38	Hypomorphic Pathogenic Variants in TAF13 Are Associated with Autosomal-Recessive Intellectual Disability and Microcephaly. American Journal of Human Genetics, 2017, 100, 555-561.	6.2	26
39	Further evidence for genetic variation at the serotonin transporter gene SLC6A4 contributing toward anxiety. Psychiatric Genetics, 2017, 27, 96-102.	1.1	23
40	Genetic regulatory effects modified by immune activation contribute to autoimmune disease associations. Nature Communications, 2017, 8, 266.	12.8	157
41	Identification of shared risk loci and pathways for bipolar disorder and schizophrenia. PLoS ONE, 2017, 12, e0171595.	2.5	77
42	Comprehensive epidemiological and genotype–phenotype analyses in a large European sample with idiopathic achalasia. European Journal of Gastroenterology and Hepatology, 2016, 28, 689-695.	1.6	20
43	Esophagus-Related Symptoms in First-Degree Relatives of Patients with Achalasia: Is Screening Necessary?. Visceral Medicine, 2016, 32, 369-374.	1.3	0
44	A new missense mutation in PLA2G6 gene among a family with infantile neuroaxonal dystrophy INAD. The Gazette of the Egyptian Paediatric Association, 2016, 64, 171-176.	0.4	4
45	More than fetal urine: enteral uptake of amniotic fluid as a major predictor for fetal growth during late gestation. European Journal of Pediatrics, 2016, 175, 825-831.	2.7	14
46	Copy number variations in 375 patients with oesophageal atresia and/or tracheoesophageal fistula. European Journal of Human Genetics, 2016, 24, 1715-1723.	2.8	27
47	Genome-wide transcriptome induced by nickel in human monocytes. Acta Biomaterialia, 2016, 43, 369-382.	8.3	14
48	The Barrettâ€associated variants at <i><scp>GDF</scp>7</i> and <i><scp>TBX</scp>5</i> also increase esophageal adenocarcinoma risk. Cancer Medicine, 2016, 5, 888-891.	2.8	21
49	Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis. Lancet Oncology, The, 2016, 17, 1363-1373.	10.7	133
50	<i>MCM3AP</i> and <i>POMP</i> Mutations Cause a DNA-Repair and DNA-Damage-Signaling Defect in an Immunodeficient Child. Human Mutation, 2016, 37, 257-268.	2.5	18
51	Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Human Molecular Genetics, 2016, 25, 3383-3394.	2.9	182
52	The HLA-DQβ1 insertion is a strong achalasia risk factor and displays a geospatial north–south gradient among Europeans. European Journal of Human Genetics, 2016, 24, 1228-1231.	2.8	21
53	Genome-wide transcriptome induced by <i>Porphyromonas gingivalis</i> LPS supports the notion of host-derived periodontal destruction and its association with systemic diseases. Innate Immunity, 2016, 22, 72-84.	2.4	14
54	Supportive evidence for <i><scp>FOXP</scp>1</i> , <i><scp>BARX</scp>1</i> , and <i><scp>FOXF</scp>1</i> as genetic risk loci for the development of esophageal adenocarcinoma. Cancer Medicine, 2015, 4, 1700-1704.	2.8	26

#	Article	IF	CITATIONS
55	Polymorphisms in DCDC2 and S100B associate with developmental dyslexia. Journal of Human Genetics, 2015, 60, 399-401.	2.3	23
56	Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8. American Journal of Human Genetics, 2015, 97, 886-893.	6.2	171
57	Inhibition of RAS Activation Due to a Homozygous Ezrin Variant in Patients with Profound Intellectual Disability. Human Mutation, 2015, 36, 270-278.	2.5	18
58	Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nature Genetics, 2015, 47, 1085-1090.	21.4	164
59	Murine genetic deficiency of neuronal nitric oxide synthase (<scp>nNOS</scp> ^{″â€}) and interstitial cells of <scp>C</scp> ajal (<scp>W</scp> / <scp>W^v</scp>): Implications for achalasia?. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 1800-1807.	2.8	19
60	Genetic variation in the <i>lymphotoxin-α</i> (<i>LTA</i>)/ <i>tumour necrosis factor-α</i> (<i>TNFα</i>) locus as a risk factor for idiopathic achalasia. Gut, 2014, 63, 1401-1409.	12.1	21
61	Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort. European Journal of Human Genetics, 2014, 22, 675-680.	2.8	59
62	Genome-wide association study reveals two new risk loci for bipolar disorder. Nature Communications, 2014, 5, 3339.	12.8	294
63	Characterizing the genetic basis of innate immune response in TLR4-activated human monocytes. Nature Communications, 2014, 5, 5236.	12.8	61
64	Common variants in the HLA-DQ region confer susceptibility to idiopathic achalasia. Nature Genetics, 2014, 46, 901-904.	21.4	104
65	Second study on the recurrence risk of isolated esophageal atresia with or without tracheaâ€esophageal fistula among firstâ€degree relatives: No evidence for increased risk of recurrence of EA/TEF or for malformations of the VATER/VACTERL association spectrum. Birth Defects Research Part A: Clinical and Molecular Teratology. 2013, 97, 786-791.	1.6	12
66	A systematic eQTL study of cis–trans epistasis in 210 HapMap individuals. European Journal of Human Genetics, 2012, 20, 97-101.	2.8	28
67	HereditÃ🋱 Fiebersyndrome. Medizinische Genetik, 2012, 24, 211-222.	0.2	0
68	Achalasia. Deutsches Ärzteblatt International, 2012, 109, 209-14.	0.9	40
69	Nine new twin pairs with esophageal atresia: A review of the literature and performance of a twin study of the disorder. Birth Defects Research Part A: Clinical and Molecular Teratology, 2012, 94, 182-186.	1.6	17
70	The Aromatase Gene CYP19A1: Several Genetic and Functional Lines of Evidence Supporting a Role in Reading, Speech and Language. Behavior Genetics, 2012, 42, 509-527.	2.1	60
71	Mutation and association analyses of the candidate genes ESR1, ESR2, MAX, PCNA, and KAT2A in patients with unexplained MSH2-deficient tumors. Familial Cancer, 2012, 11, 19-26.	1.9	1
72	The genetics of panic disorder. Journal of Medical Genetics, 2011, 48, 361-368.	3.2	46

#	Article	IF	CITATIONS
73	Association study of the GRIA1 and CLINT1 (Epsin 4) genes in a German schizophrenia sample. Psychiatric Genetics, 2011, 21, 114.	1.1	5
74	Genome-wide Association Study Identifies Genetic Variation in Neurocan as a Susceptibility Factor for Bipolar Disorder. American Journal of Human Genetics, 2011, 88, 372-381.	6.2	257
75	Genome-wide Association Study Identifies Genetic Variation in Neurocan as a Susceptibility Factor for Bipolar Disorder. American Journal of Human Genetics, 2011, 88, 396.	6.2	6
76	SNP Variations in the 7q33 Region Containing DGKI are Associated with Dyslexia in the Finnish and German Populations. Behavior Genetics, 2011, 41, 134-140.	2.1	25
77	Mapping for dyslexia and related cognitive trait loci provides strong evidence for further risk genes on chromosome 6p21. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 36-43.	1.7	26
78	Homozygosity mapping in 64 Syrian consanguineous families with non-specific intellectual disability reveals 11 novel loci and high heterogeneity. European Journal of Human Genetics, 2011, 19, 1161-1166.	2.8	84
79	A systematic association mapping on chromosome 6q in bipolar affective disorder—evidence for the <i>melaninâ€concentratingâ€hormoneâ€receptorâ€2</i> gene as a risk factor for bipolar affective disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 878-884.	1.7	5
80	Association study of 20 genetic variants at the D-amino acid oxidase gene in schizophrenia. Psychiatric Genetics, 2010, 20, 82-83.	1.1	1
81	Achalasia: will genetic studies provide insights?. Human Genetics, 2010, 128, 353-364.	3.8	82
82	Variation in <i>GRIN2B</i> contributes to weak performance in verbal shortâ€ŧerm memory in children with dyslexia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 503-511.	1.7	37
83	European collaborative study of earlyâ€onset bipolar disorder: Evidence for genetic heterogeneity on 2q14 according to age at onset. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1425-1433.	1.7	16
84	The International Consortium on Lithium Genetics (ConLiGen): An Initiative by the NIMH and IGSLI to Study the Genetic Basis of Response to Lithium Treatment. Neuropsychobiology, 2010, 62, 72-78.	1.9	134
85	A reappraisal of the association between Dysbindin (DTNBP1) and schizophrenia in a large combined case–control and family-based sample of German ancestry. Schizophrenia Research, 2010, 118, 98-105.	2.0	17
86	The catechol-O-methyl transferase (COMT) gene and its potential association with schizophrenia: Findings from a large German case-control and family-based sample. Schizophrenia Research, 2010, 122, 24-30.	2.0	21
87	Serotonin transporter polymorphisms and panic disorder. Genome Medicine, 2010, 2, 40.	8.2	12
88	The DISC locus and schizophrenia: evidence from an association study in a central European sample and from a meta-analysis across different European populations. Human Molecular Genetics, 2009, 18, 2719-2727.	2.9	78
89	RNASET2-deficient cystic leukoencephalopathy resembles congenital cytomegalovirus brain infection. Nature Genetics, 2009, 41, 773-775.	21.4	124
90	Moodâ€incongruent psychosis in bipolar disorder: conditional linkage analysis shows genomeâ€wide suggestive linkage at 1q32.3, 7p13 and 20q13.31. Bipolar Disorders, 2009, 11, 610-620.	1.9	23

JOHANNES SCHUMACHER

#	Article	IF	CITATIONS
91	Behavioral changes in G72/G30 transgenic mice. European Neuropsychopharmacology, 2009, 19, 339-348.	0.7	63
92	No association between genetic variants at the DGCR2 gene and schizophrenia in a German sample. Psychiatric Genetics, 2009, 19, 104.	1.1	5
93	No association between the D-aspartate oxidase locus and schizophrenia. Psychiatric Genetics, 2009, 19, 56.	1.1	1
94	Further evidence for DYX1C1 as a susceptibility factor for dyslexia. Psychiatric Genetics, 2009, 19, 59-63.	1.1	62
95	Brief Report: No Association Between Premorbid Adjustment in Adult-Onset Schizophrenia and Genetic Variation in Dysbindin. Journal of Autism and Developmental Disorders, 2008, 38, 1977-1981.	2.7	1
96	Investigation of interaction between DCDC2 and KIAA0319 in a large German dyslexia sample. Journal of Neural Transmission, 2008, 115, 1587-1589.	2.8	41
97	Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 2008, 40, 1053-1055.	21.4	977
98	<i>G72</i> and Its Association With Major Depression and Neuroticism in Large Population-Based Groups From Germany. American Journal of Psychiatry, 2008, 165, 753-762.	7.2	50
99	Further evidence for a susceptibility locus contributing to reading disability on chromosome 15q15–q21. Psychiatric Genetics, 2008, 18, 137-142.	1.1	15
100	Association study between genetic variants at the VAMP2 and VAMP3 loci and bipolar affective disorder. Psychiatric Genetics, 2008, 18, 199-203.	1.1	10
101	Investigation of the DCDC2 intron 2 deletion/compound short tandem repeat polymorphism in a large German dyslexia sample. Psychiatric Genetics, 2008, 18, 310-312.	1.1	46
102	Genetics of dyslexia: the evolving landscape. Journal of Medical Genetics, 2007, 44, 289-297.	3.2	107
103	Brain-specific tryptophan hydroxylase 2 (TPH2): a functional Pro206Ser substitution and variation in the 5'-region are associated with bipolar affective disorder. Human Molecular Genetics, 2007, 17, 87-97.	2.9	109
104	A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia. Human Molecular Genetics, 2007, 16, 667-677.	2.9	102
105	No association between the serine racemase gene (SRR) and bipolar disorder in a German case–control sample. Psychiatric Genetics, 2007, 17, 127.	1.1	0
106	No evidence for an association between variants at the γ-amino-n-butyric acid type A receptor β2 locus and schizophrenia. Psychiatric Genetics, 2007, 17, 43-45.	1.1	6
107	Possible association between genetic variants at the GRIN1 gene and schizophrenia with lifetime history of depressive symptoms in a German sample. Psychiatric Genetics, 2007, 17, 308-310.	1.1	36
108	No association between the serine racemase gene (SRR) and schizophrenia in a German case–control sample. Psychiatric Genetics, 2007, 17, 125.	1.1	9

#	Article	IF	CITATIONS
109	The First Genomewide Interaction and Locus-Heterogeneity Linkage Scan in Bipolar Affective Disorder: Strong Evidence of Epistatic Effects between Loci on Chromosomes 2q and 6q. American Journal of Human Genetics, 2007, 81, 974-986.	6.2	49
110	Strong Genetic Evidence of DCDC2 as a Susceptibility Gene for Dyslexia. American Journal of Human Genetics, 2006, 78, 52-62.	6.2	211
111	Brain-derived neurotrophic factor gene (BDNF) variants and schizophrenia: An association study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2006, 30, 924-933.	4.8	98
112	No association between genetic variants at the ASCT1 gene and schizophrenia or bipolar disorder in a German sample. Psychiatric Genetics, 2006, 16, 233-234.	1.1	6
113	No association between genetic variants at the GLYT2 gene and bipolar affective disorder and schizophrenia. Psychiatric Genetics, 2006, 16, 91.	1.1	5
114	No evidence for association between NOTCH4 and schizophrenia in a large family-based and case–control association analysis. Psychiatric Genetics, 2006, 16, 197-203.	1.1	6
115	No association between genetic variants at the GRIN1 gene and bipolar disorder in a German sample. Psychiatric Genetics, 2006, 16, 183-184.	1.1	7
116	Association study of a functional promoter polymorphism in theXBP1 gene and schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 71-75.	1.7	13
117	Association study between genetic variants at the PIP5K2A gene locus and schizophrenia and bipolar affective disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 663-665.	1.7	11
118	No evidence for an association between variants at the proline dehydrogenase locus and schizophrenia or bipolar affective disorder. Psychiatric Genetics, 2005, 15, 195-198.	1.1	8
119	Haplotype interaction analysis of unlinked regions. Genetic Epidemiology, 2005, 29, 313-322.	1.3	43
120	Genes and Schizophrenia: The G72/G30 Gene Locus in Psychiatric Disorders: A Challenge to Diagnostic Boundaries?. Schizophrenia Bulletin, 2005, 32, 599-608.	4.3	46
121	Genotype-Phenotype Studies in Bipolar Disorder Showing Association Between the DAOA/G30 Locus and Persecutory Delusions: A First Step Toward a Molecular Genetic Classification of Psychiatric Phenotypes. American Journal of Psychiatry, 2005, 162, 2101-2108.	7.2	123
122	Genetic Variation in the Human Androgen Receptor Gene Is the Major Determinant of Common Early-Onset Androgenetic Alopecia. American Journal of Human Genetics, 2005, 77, 140-148.	6.2	198
123	Combined Analysis from Eleven Linkage Studies of Bipolar Disorder Provides Strong Evidence of Susceptibility Loci on Chromosomes 6q and 8q. American Journal of Human Genetics, 2005, 77, 582-595.	6.2	218
124	Genomewide Scan and Fine-Mapping Linkage Studies in Four European Samples with Bipolar Affective Disorder Suggest a New Susceptibility Locus on Chromosome 1p35-p36 and Provides Further Evidence of Loci on Chromosome 4q31 and 6q24. American Journal of Human Genetics, 2005, 77, 1102-1111.	6.2	56
125	No Association Between the Putative Functional ZDHHC8 Single Nucleotide Polymorphism rs175174 and Schizophrenia in Large European Samples. Biological Psychiatry, 2005, 58, 78-80.	1.3	41
126	Evidence for a Relationship Between Genetic Variants at the Brain-Derived Neurotrophic Factor (BDNF) Locus and Major Depression. Biological Psychiatry, 2005, 58, 307-314.	1.3	284

JOHANNES SCHUMACHER

#	Article	IF	CITATIONS
127	Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. Nature Genetics, 2004, 36, 783-784.	21.4	57
128	Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Molecular Psychiatry, 2004, 9, 203-207.	7.9	293
129	Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers. BMC Psychiatry, 2004, 4, 4.	2.6	32
130	DRD4 exon 3 variants are not associated with symptomatology of major psychoses in a German population. Neuroscience Letters, 2004, 368, 269-273.	2.1	5
131	No evidence for DUP25 in patients with panic disorder using a quantitative real-time PCR approach. Human Genetics, 2003, 114, 115-117.	3.8	16
132	Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part III: Bipolar Disorder. American Journal of Human Genetics, 2003, 73, 49-62.	6.2	400
133	The DTNBP1 (Dysbindin) Gene Contributes to Schizophrenia, Depending on Family History of the Disease. American Journal of Human Genetics, 2003, 73, 1438-1443.	6.2	180
134	No association between a putative functional promoter variant in the dopamine ??-hydroxylase gene and schizophrenia. Psychiatric Genetics, 2003, 13, 175-178.	1.1	15
135	Can long-range microsatellite data be used to predict short-range linkage disequilibrium?. Human Molecular Genetics, 2002, 11, 1363-1372.	2.9	22
136	Variant 1859G→A (Arg620Gln) of the "Hairless―Gene: Absence of Association with Papular Atrichia or Androgenetic Alopecia. American Journal of Human Genetics, 2001, 69, 235-237.	6.2	15
137	Lack of association between a functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene and tardive dyskinesia in schizophrenia. American Journal of Medical Genetics Part A, 2001, 105, 498-501.	2.4	56
138	Pharmacogenetics of clozapine response. Lancet, The, 2000, 356, 506-507.	13.7	66
139	eQTL set-based association analysis identifies novel susceptibility loci for Barrett's esophagus and esophageal adenocarcinoma. Cancer Epidemiology Biomarkers and Prevention, 0, , .	2.5	1