Tore Eid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2020613/publications.pdf

Version: 2024-02-01

159585 144013 3,417 81 30 57 h-index citations g-index papers 82 82 82 4370 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Threshold for the pleasurable effects of nicotine are lower than its reinforcing effects during self-administration Experimental and Clinical Psychopharmacology, 2023, 31, 37-45.	1.8	O
2	Transforming Glia to Neurons Effectively Treats Temporal Lobe Seizures. Epilepsy Currents, 2022, 22, 130-131.	0.8	1
3	Harnessing Metabolomics to Advance Epilepsy Research. Epilepsy Currents, 2022, 22, 123-129.	0.8	2
4	Impact of delivery rate on the acute response to intravenous nicotine: A human laboratory study with implications for regulatory science. Addiction Biology, 2022, 27, e13161.	2.6	3
5	Plasma Menthol Glucuronide as a Biomarker for the Behavioral Effects of Menthol and Nicotine in Humans. Frontiers in Pharmacology, 2022, 13, 844824.	3.5	O
6	Gene expression in the epileptic (EL) mouse hippocampus. Neurobiology of Disease, 2021, 147, 105152.	4.4	17
7	Ticktock—What Is the Seizure Driving Clock?. Epilepsy Currents, 2021, 21, 122-123.	0.8	O
8	Network-Related Changes in Neurotransmitters and Seizure Propagation During Rodent Epileptogenesis. Neurology, 2021, 96, e2261-e2271.	1.1	11
9	Threshold dose for intravenous nicotine self-administration in young adult non-dependent smokers. Psychopharmacology, 2021, 238, 2083-2090.	3.1	6
10	Localizing the Seizure Onset Site Through Metabolic Imaging of GABA. Epilepsy Currents, 2021, 21, 153575972110119.	0.8	0
11	Astroglial Glutamine Synthetase and the Pathogenesis of Mesial Temporal Lobe Epilepsy. Frontiers in Neurology, 2021, 12, 665334.	2.4	18
12	Increased branchedâ€chain amino acids at baseline and hours before a spontaneous seizure in the human epileptic brain. Epilepsia, 2021, 62, e88-e97.	5.1	6
13	Altered hippocampal astroglial metabolism is associated with aging and preserved spatial learning and memory. Neurobiology of Aging, 2021, 102, 188-199.	3.1	3
14	Progressive Neuronal Loss in Epilepsy – A Long-Standing Conundrum Finally Resolved?. Epilepsy Currents, 2021, 21, 366-368.	0.8	2
15	Small loci of astroglial glutamine synthetase deficiency in the postnatal brain cause epileptic seizures and impaired functional connectivity. Epilepsia, 2021, 62, 2858-2870.	5.1	7
16	Brain Energy Oscillations–A Possible Explanation for Seizure Periodicity in Epilepsy?. Epilepsy Currents, 2021, 21, 153575972110435.	0.8	0
17	Evaluating the effect of switching to non-menthol cigarettes among current menthol smokers: an empirical study of a potential ban of characterising menthol flavour in cigarettes. Tobacco Control, 2020, 29, tobaccocontrol-2019-055154.	3.2	18
18	Oral glutamine supplementation increases seizure severity in a rodent model of mesial temporal lobe epilepsy. Nutritional Neuroscience, 2020, , 1-6.	3.1	1

#	Article	IF	CITATIONS
19	Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochemistry International, 2020, 140, 104809.	3.8	36
20	Circadian-Like Rhythmicity of Extracellular Brain Glutamate in Epilepsy. Frontiers in Neurology, 2020, 11, 398.	2.4	4
21	Epilepsy Benchmarks Area II: Prevent Epilepsy and Its Progression. Epilepsy Currents, 2020, 20, 14S-22S.	0.8	9
22	Selective deletion of glutamine synthetase in the mouse cerebral cortex induces glial dysfunction and vascular impairment that precede epilepsy and neurodegeneration. Neurochemistry International, 2019, 123, 22-33.	3.8	39
23	Astrocytes and Glutamine Synthetase in Epileptogenesis. Journal of Neuroscience Research, 2019, 97, 1345-1362.	2.9	45
24	Branched-Chain Amino Acids and Seizures: A Systematic Review of the Literature. CNS Drugs, 2019, 33, 755-770.	5.9	12
25	An Ancient Enzyme Takes a Hit in Epilepsy. Epilepsy Currents, 2019, 19, 400-401.	0.8	0
26	Human and rodent temporal lobe epilepsy is characterized by changes in O-GlcNAc homeostasis that can be reversed to dampen epileptiform activity. Neurobiology of Disease, 2019, 124, 531-543.	4.4	19
27	Axon-terminals expressing EAAT2 (GLT-1; Slc1a2) are common in the forebrain and not limited to the hippocampus. Neurochemistry International, 2019, 123, 101-113.	3.8	41
28	Effects of Branched-Chain Amino Acid Supplementation on Spontaneous Seizures and Neuronal Viability in a Model of Mesial Temporal Lobe Epilepsy. Journal of Neurosurgical Anesthesiology, 2019, 31, 247-256.	1.2	8
29	5 Oral Administration of Branched-Chain Amino Acids Results in Increased Seizure Threshold and Loss of Hippocampal Neurons in a Rodent Model of Mesial Temporal Lobe Epilepsy. American Journal of Clinical Pathology, 2018, 149, S165-S166.	0.7	0
30	Evidence for altered insulin receptor signaling in Alzheimer's disease. Neuropharmacology, 2018, 136, 202-215.	4.1	43
31	2235 15N-Leucine transport across the blood brain barrier is significantly impaired in the glutamine synthetase-inhibited brain. Journal of Clinical and Translational Science, 2018, 2, 1-1.	0.6	O
32	Cerebrospinal fluid untargeted metabolomic profiling of aneurysmal subarachnoid hemorrhage: an exploratory study. British Journal of Neurosurgery, 2018, 32, 637-641.	0.8	15
33	Impaired Glutamatergic Neurotransmission in the Ventromedial Hypothalamus May Contribute to Defective Counterregulation in Recurrently Hypoglycemic Rats. Diabetes, 2017, 66, 1979-1989.	0.6	21
34	Network evolution in mesial temporal lobe epilepsy revealed by diffusion tensor imaging. Epilepsia, 2017, 58, 824-834.	5.1	31
35	Progressive neuronal activation accompanies epileptogenesis caused by hippocampal glutamine synthetase inhibition. Experimental Neurology, 2017, 288, 122-133.	4.1	16
36	Novel biomarker identification using metabolomic profiling to differentiate radiation necrosis and recurrent tumor following Gamma Knife radiosurgery. Journal of Neurosurgery, 2017, 127, 388-396.	1.6	11

#	Article	IF	Citations
37	Elevated basal glutamate and unchanged glutamine and GABA in refractory epilepsy: Microdialysis study of 79 patients at the yale epilepsy surgery program. Annals of Neurology, 2016, 80, 35-45.	5.3	71
38	The Glutamate–Glutamine Cycle in Epilepsy. Advances in Neurobiology, 2016, 13, 351-400.	1.8	57
39	Imaging synaptic density in the living human brain. Science Translational Medicine, 2016, 8, 348ra96.	12.4	343
40	Effects of site-specific infusions of methionine sulfoximine on the temporal progression of seizures in a rat model of mesial temporal lobe epilepsy. Epilepsy Research, 2015, 115, 45-54.	1.6	16
41	Inhibition of glutamine synthetase in the central nucleus of the amygdala induces anhedonic behavior and recurrent seizures in a rat model of mesial temporal lobe epilepsy. Epilepsy and Behavior, 2015, 51, 96-103.	1.7	14
42	Monocarboxylate transporters in temporal lobe epilepsy: roles of lactate and ketogenic diet. Brain Structure and Function, 2015, 220, 1-12.	2.3	33
43	5-Aminovaleric acid suppresses the development of severe seizures in the methionine sulfoximine model of mesial temporal lobe epilepsy. Neurobiology of Disease, 2014, 67, 18-23.	4.4	16
44	Treating the Brain Through the Gut. Science Translational Medicine, 2014, 6, .	12.4	0
45	Boosting Metabolism by Sweetening the Gut. Science Translational Medicine, 2014, 6, .	12.4	0
46	Reassessing the role of astrocytes in ammonia neurotoxicity. Nature Medicine, 2013, 19, 1572-1574.	30.7	10
47	Regulation of astrocyte glutamine synthetase in epilepsy. Neurochemistry International, 2013, 63, 670-681.	3.8	94
48	Gene expression of glutamate metabolizing enzymes in the hippocampal formation in human temporal lobe epilepsy. Epilepsia, 2013, 54, 228-238.	5.1	17
49	Lights of Hope in the Treatment of Epilepsy. Science Translational Medicine, 2013, 5, .	12.4	0
50	A Cool Intervention for Posttraumatic Epilepsy. Science Translational Medicine, 2013, 5, .	12.4	0
51	The Source of Youth and Longevity Revealed?. Science Translational Medicine, 2013, 5, .	12.4	0
52	Stealth Attack by the Gut Microbiota. Science Translational Medicine, 2013, 5, .	12.4	0
53	Starvation Strengthens Addiction. Science Translational Medicine, 2013, 5, .	12.4	0
54	A One-Two Punch for Aging and Brain Malformations. Science Translational Medicine, 2013, 5, .	12.4	0

#	Article	IF	CITATIONS
55	Removing Salt from the Wound. Science Translational Medicine, 2013, 5, .	12.4	O
56	Loss of Perivascular Kir4.1 Potassium Channels in the Sclerotic Hippocampus of Patients With Mesial Temporal Lobe Epilepsy. Journal of Neuropathology and Experimental Neurology, 2012, 71, 814-825.	1.7	92
57	Roles of Glutamine Synthetase Inhibition in Epilepsy. Neurochemical Research, 2012, 37, 2339-2350.	3.3	57
58	Astrocytic regulation of glutamate homeostasis in epilepsy. Glia, 2012, 60, 1215-1226.	4.9	256
59	Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus. Glia, 2012, 60, 1172-1181.	4.9	26
60	Altered expression of brain monocarboxylate transporter 1 in models of temporal lobe epilepsy. Neurobiology of Disease, 2012, 45, 165-176.	4.4	45
61	Evidence for astrocytes as a potential source of the glutamate excess in temporal lobe epilepsy. Neurobiology of Disease, 2012, 47, 331-337.	4.4	49
62	Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus. Neurobiology of Disease, 2011, 41, 577-584.	4.4	43
63	Genomic Expression in the Epileptogenic Hippocampus and Psychiatric Co-Morbidities. Current Psychiatry Reviews, 2010, 6, 135-144.	0.9	2
64	The development of recurrent seizures after continuous intrahippocampal infusion of methionine sulfoximine in rats. Experimental Neurology, 2009, 220, 293-302.	4.1	47
65	Glutamate and astrocytes—Key players in human mesial temporal lobe epilepsy?. Epilepsia, 2008, 49, 42-52.	5.1	127
66	Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain, 2008, 131, 2061-2070.	7.6	129
67	Gene Expression in Temporal Lobe Epilepsy is Consistent with Increased Release of Glutamate by Astrocytes. Molecular Medicine, 2007, 13, 1-13.	4.4	121
68	Increased expression of phosphate-activated glutaminase in hippocampal neurons in human mesial temporal lobe epilepsy. Acta Neuropathologica, 2007, 113, 137-152.	7.7	43
69	Differential Glutamate Dehydrogenase (GDH) Activity Profile in Patients with Temporal Lobe Epilepsy. Epilepsia, 2006, 47, 1292-1299.	5.1	46
70	GAT1 and GAT3 expression are differently localized in the human epileptogenic hippocampus. Acta Neuropathologica, 2006, 111, 351-363.	7.7	61
71	Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1193-1198.	7.1	241
72	Aquaporin-4 is increased in the sclerotic hippocampus in human temporal lobe epilepsy. Acta Neuropathologica, 2004, 108, 493-502.	7.7	129

TORE EID

#	Article	IF	CITATION
73	Increased Expression of Erythropoietin Receptor on Blood Vessels in the Human Epileptogenic Hippocampus with Sclerosis. Journal of Neuropathology and Experimental Neurology, 2004, 63, 73-83.	1.7	50
74	A Retrospective Analysis of Hippocampal Pathology in Human Temporal Lobe Epilepsy: Evidence for Distinctive Patient Subcategories. Epilepsia, 2003, 44, 677-687.	5.1	233
75	Delayed K+ clearance associated with aquaporin-4 mislocalization: Phenotypic defects in brains of Â-syntrophin-null mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13615-13620.	7.1	324
76	Recombinant Human Erythropoietin for Neuroprotection: What Is the Evidence?. Clinical Breast Cancer, 2002, 3, S109-S115.	2.4	48
77	Novel expression of AMPA-receptor subunit GluR1 on mossy cells and CA3 pyramidal neurons in the human epileptogenic hippocampus. European Journal of Neuroscience, 2002, 15, 517-527.	2.6	30
78	Disruption of Inhibition in Area CA1 of the Hippocampus in a Rat Model of Temporal Lobe Epilepsy. Journal of Neurophysiology, 2001, 86, 2231-2245.	1.8	17
79	Ultrastructure and immunocytochemical distribution of GABA in layer III of the rat medial entorhinal cortex following aminooxyacetic acid-induced seizures. Experimental Brain Research, 1999, 125, 463-475.	1.5	28
80	Glutamate receptor subunits GluR1 and GluR2/3 distribution shows reorganization in the human epileptogenic hippocampus. European Journal of Neuroscience, 1998, 10, 1687-1703.	2.6	57
81	Catch the rhythm!. Epilepsy Currents, 0, , 153575972210990.	0.8	0