Marie Pancera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2020607/publications.pdf

Version: 2024-02-01

41 papers 6,920 citations

236925 25 h-index 265206 42 g-index

49 all docs

49 docs citations

49 times ranked

6862 citing authors

#	Article	IF	Citations
1	The light chain of the L9 antibody is critical for binding circumsporozoite protein minor repeats and preventing malaria. Cell Reports, 2022, 38, 110367.	6.4	11
2	Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Communications Biology, 2022, 5, 342.	4.4	41
3	Characterization of a vaccine-elicited human antibody with sequence homology to VRC01-class antibodies that binds the C1C2 gp120 domain. Science Advances, 2022, 8, eabm3948.	10.3	1
4	Highly protective antimalarial antibodies via precision library generation and yeast display screening. Journal of Experimental Medicine, 2022, 219, .	8.5	9
5	Protective antibodies against human parainfluenza virus type 3 infection. MAbs, 2021, 13, 1912884.	5.2	13
6	Multimeric antibodies from antigen-specific human $IgM+$ memory B cells restrict <i>Plasmodium</i> parasites. Journal of Experimental Medicine, 2021, 218, .	8.5	23
7	Design of Alphavirus Virus-Like Particles Presenting Circumsporozoite Junctional Epitopes That Elicit Protection against Malaria. Vaccines, 2021, 9, 272.	4.4	16
8	Development of a VRC01-class germline targeting immunogen derived from anti-idiotypic antibodies. Cell Reports, 2021, 35, 109084.	6.4	7
9	Isolation and characterization of cross-neutralizing coronavirus antibodies from COVID-19+ subjects. Cell Reports, 2021, 36, 109353.	6.4	95
10	Structurally related but genetically unrelated antibody lineages converge on an immunodominant HIV-1 Env neutralizing determinant following trimer immunization. PLoS Pathogens, 2021, 17, e1009543.	4.7	5
11	Vaccination in a humanized mouse model elicits highly protective PfCSP-targeting anti-malarial antibodies. Immunity, 2021, 54, 2859-2876.e7.	14.3	19
12	Extensive dissemination and intraclonal maturation of HIV Env vaccine-induced B cell responses. Journal of Experimental Medicine, 2020, 217, .	8.5	23
13	A Potent Anti-Malarial Human Monoclonal Antibody Targets Circumsporozoite Protein Minor Repeats and Neutralizes Sporozoites in the Liver. Immunity, 2020, 53, 733-744.e8.	14.3	99
14	HIV-1 VRC01 Germline-Targeting Immunogens Select Distinct Epitope-Specific B Cell Receptors. Immunity, 2020, 53, 840-851.e6.	14.3	27
15	Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation. Nature Communications, 2020, $11,5413$.	12.8	154
16	Antibody Binding to SARS-CoV-2 S Glycoprotein Correlates with but Does Not Predict Neutralization. Viruses, 2020, 12, 1214.	3.3	26
17	Analysis of a SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited Somatic Mutation. Immunity, 2020, 53, 98-105.e5.	14.3	376
18	Detection and activation of HIV broadly neutralizing antibody precursor B cells using anti-idiotypes. Journal of Experimental Medicine, 2019, 216, 2331-2347.	8.5	13

#	Article	lF	Citations
19	Anti-idiotypic antibodies elicit anti-HIV-1–specific B cell responses. Journal of Experimental Medicine, 2019, 216, 2316-2330.	8.5	19
20	Vaccination with Glycan-Modified HIV NFL Envelope Trimer-Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability. Immunity, 2019, 51, 915-929.e7.	14.3	111
21	Overcoming Steric Restrictions of VRC01 HIV-1 Neutralizing Antibodies through Immunization. Cell Reports, 2019, 29, 3060-3072.e7.	6.4	26
22	An Antibody Targeting the Fusion Machinery Neutralizes Dual-Tropic Infection and Defines a Site of Vulnerability on Epstein-Barr Virus. Immunity, 2018, 48, 799-811.e9.	14.3	104
23	A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nature Medicine, 2018, 24, 408-416.	30.7	235
24	Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer and a glycosylated HIV-1 gp120 core. ELife, 2018, 7, .	6.0	32
25	Germlineâ€ŧargeting immunogens. Immunological Reviews, 2017, 275, 203-216.	6.0	105
26	Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity. Journal of Virology, 2017, 91, .	3.4	81
27	How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design. Current Opinion in HIV and AIDS, 2017, 12, 229-240.	3.8	66
28	Soluble Prefusion Closed DS-SOSIP.664-Env Trimers of Diverse HIV-1 Strains. Cell Reports, 2017, 21, 2992-3002.	6.4	69
29	Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. Cell, 2016, 165, 813-826.	28.9	379
30	Differences in Allelic Frequency and CDRH3 Region Limit the Engagement of HIV Env Immunogens by Putative VRC01 Neutralizing Antibody Precursors. Cell Reports, 2016, 17, 1560-1570.	6.4	42
31	Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.	28.9	305
32	Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014, 509, 55-62.	27.8	681
33	Structural Definition of an Antibody-Dependent Cellular Cytotoxicity Response Implicated in Reduced Risk for HIV-1 Infection. Journal of Virology, 2014, 88, 12895-12906.	3.4	108
34	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	27.8	702
35	Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nature, 2014, 515, 138-142.	27.8	400
36	Somatic Mutations of the Immunoglobulin Framework Are Generally Required for Broad and Potent HIV-1 Neutralization. Cell, 2013, 153, 126-138.	28.9	478

3

#	Article	IF	CITATIONS
37	Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 2013, 38, 176-186.	14.3	374
38	Mining the antibodyome for HIV-1–neutralizing antibodies with next-generation sequencing and phylogenetic pairing of heavy/light chains. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6470-6475.	7.1	142
39	Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors. Journal of Virology, 2011, 85, 9998-10009.	3.4	393
40	Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature, 2011, 480, 336-343.	27.8	794
41	Structural Basis of Immune Evasion at the Site of CD4 Attachment on HIV-1 gp120. Science, 2009, 326, 1123-1127.	12.6	271