
Stephen C Land

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2020124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic review and meta-analysis as a structured platform for teaching principles of experimentation. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 276-285.	1.6	2
2	Regulation of vascular signalling by nuclear Sprouty2 in fetal lung epithelial cells: Implications for co-ordinated airway and vascular branching in lung development. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2018, 224, 105-114.	1.6	11
3	Using Drugs to Probe the Variability of Trans-Epithelial Airway Resistance. PLoS ONE, 2016, 11, e0149550.	2.5	14
4	Dexamethasone and insulin activate serum and glucocorticoid-inducible kinase 1 (SGK1) via different molecular mechanisms in cortical collecting duct cells. Physiological Reports, 2016, 4, e12792.	1.7	21
5	mTOR signalling, embryogenesis and the control of lung development. Seminars in Cell and Developmental Biology, 2014, 36, 68-78.	5.0	34
6	Cardioprotective SUR2A promotes stem cell properties of cardiomyocytes. International Journal of Cardiology, 2013, 168, 5090-5092.	1.7	8
7	Epithelial Na ⁺ channel activity in human airway epithelial cells: the role of serum and glucocorticoidâ€inducible kinase 1. British Journal of Pharmacology, 2012, 166, 1272-1289.	5.4	18
8	Inhibition of cellular and systemic inflammation cues in human bronchial epithelial cells by melanocortin-related peptides: mechanism of KPV action and a role for MC3R agonists. International Journal of Physiology, Pathophysiology and Pharmacology, 2012, 4, 59-73.	0.8	10
9	Determining the pathogenicity of patient-derived TSC2 mutations by functional characterization and clinical evidence. European Journal of Human Genetics, 2011, 19, 789-795.	2.8	9
10	The airway branch regulator, Sprouty2, represses vasculogenesis in fetal lung by direct interaction with the VEGF promoter. FASEB Journal, 2011, 25, 861.8.	0.5	0
11	Expression of Wild-Type CFTR Suppresses NF-κB-Driven Inflammatory Signalling. PLoS ONE, 2010, 5, e11598.	2.5	56
12	Hypoxia-inducible Factor 1α Is Regulated by the Mammalian Target of Rapamycin (mTOR) via an mTOR Signaling Motif. Journal of Biological Chemistry, 2007, 282, 20534-20543.	3.4	429
13	Redox Regulation of Lung Development and Perinatal Lung Epithelial Function. Antioxidants and Redox Signaling, 2005, 7, 92-107.	5.4	41
14	Thymulin evokes IL-6-C/EBPβ regenerative repair and TNF-α silencing during endotoxin exposure in fetal lung explants. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L473-L487.	2.9	20
15	Hochachka's "Hypoxia Defense Strategies―and the development of the pathway for oxygen. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2004, 139, 415-433.	1.6	13
16	O2 can raise fetal pneumocyte Na+ conductance without affecting ENaC mRNA abundance. Biochemical and Biophysical Research Communications, 2003, 305, 671-676.	2.1	11
17	Oxygen-sensing pathways and the development of mammalian gas exchange. Redox Report, 2003, 8, 325-340.	4.5	27
18	Redox Signaling-Mediated Regulation of Lipopolysaccharide-Induced Proinflammatory Cytokine Biosynthesis in Alveolar Epithelial Cells. Antioxidants and Redox Signaling, 2002, 4, 179-193.	5.4	44

STEPHEN C LAND

#	Article	IF	CITATIONS
19	Immunopharmacological Potential of Selective Phosphodiesterase Inhibition. I. Differential Regulation of Lipopolysaccharide-Mediated Proinflammatory Cytokine (Interleukin-6 and Tumor) Tj ETQq1 1 0.784	314 rgBT	/9yerlock
	Therapeutics, 2002, 300, 559-566.		
20	Immunopharmacological Potential of Selective Phosphodiesterase Inhibition. II. Evidence for the Involvement of an Inhibitory-κB/Nuclear Factor-κB-Sensitive Pathway in Alveolar Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 567-576.	2.5	49
21	Amiloride Blockades Lipopolysaccharide-Induced Proinflammatory Cytokine Biosynthesis in an I κ B- α /NF- κ B–Dependent Mechanism. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 114-126.	2.9	52
22	The ex Vivo Differential Expression of Apoptosis Signaling Cofactors in the Developing Perinatal Lung: Essential Role of Oxygenation During the Transition from Placental to Pulmonary-Based Respiration. Biochemical and Biophysical Research Communications, 2001, 281, 311-316.	2.1	18
23	NF-κB Blockade Reduces the O 2 -Evoked Rise in Na + Conductance in Fetal Alveolar Cells. Biochemical and Biophysical Research Communications, 2001, 281, 987-992.	2.1	22
24	Nuclear Factor-κB Blockade Attenuates but Does Not Abrogate Lipopolysaccharide-Dependent Tumor Necrosis Factor-α Biosynthesis in Alveolar Epithelial Cells. Biochemical and Biophysical Research Communications, 2001, 285, 267-272.	2.1	19
25	Hypoxic Activation of an Amiloride-Sensitive Cation Conductance in Alveolar Epithelial Cells. Biochemical and Biophysical Research Communications, 2001, 286, 622-627.	2.1	2
26	CHEMIOXYEXCITATION (Î"p O2/ROS)-DEPENDENT RELEASE OF IL-1Î ² , IL-6 AND TNF-α: EVIDENCE OF CYTOKINES λ OXYGEN-SENSITIVE MEDIATORS IN THE ALVEOLAR EPITHELIUM. Cytokine, 2001, 13, 138-147.	4 <u>§</u> .2	71
27	A non-hypoxic, ROS-sensitive pathway mediates TNF-α-dependent regulation of HIF-1α. FEBS Letters, 2001, 505, 269-274.	2.8	233
28	α-Melanocyte-related tripeptide, Lys-d-Pro-Val, ameliorates endotoxin-induced nuclear factor κB translocation and activation: evidence for involvement of an interleukin-1β193‒195 receptor antagonism in the alveolar epithelium. Biochemical Journal, 2001, 355, 29.	3.7	39
29	α-Melanocyte-related tripeptide, Lys-d-Pro-Val, ameliorates endotoxin-induced nuclear factor κB translocation and activation: evidence for involvement of an interleukin-1β193–195 receptor antagonism in the alveolar epithelium. Biochemical Journal, 2001, 355, 29-38.	3.7	73
30	O ₂ -evoked regulation of HIF-1α and NF-κB in perinatal lung epithelium requires glutathione biosynthesis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L492-L503.	2.9	88
31	Antioxidant/Pro-oxidant Equilibrium Regulates HIF-1α and NF-κB Redox Sensitivity. Journal of Biological Chemistry, 2000, 275, 21130-21139.	3.4	222
32	The Differential Expression of Apoptosis Factors in the Alveolar Epithelium Is Redox Sensitive and Requires NF-κB (RelA)-Selective Targeting. Biochemical and Biophysical Research Communications, 2000, 271, 257-267.	2.1	55
33	Immunomodulatory Potential of Thymulin–Zn2+ in the Alveolar Epithelium: Amelioration of Endotoxin-Induced Cytokine Release and Partial Amplification of a Cytoprotective IL-10-Sensitive Pathway. Biochemical and Biophysical Research Communications, 2000, 274, 500-505.	2.1	23
34	Chapter 18 Estivation: Mechanisms and control of metabolic suppression. Biochemistry and Molecular Biology of Fishes, 1995, 5, 381-412.	0.5	11