Jianwen Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2019618/publications.pdf

Version: 2024-02-01

279 papers 5,566 citations

39 h-index 63 g-index

308 all docs 308 docs citations

308 times ranked 5100 citing authors

#	Article	IF	Citations
1	A fast normalized cross-correlation calculation method for motion estimation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1347-1357.	3.0	303
2	Savitzky–Golay smoothing and differentiation filter for even number data. Signal Processing, 2005, 85, 1429-1434.	3.7	264
3	Properties of Savitzky–Golay digital differentiators. , 2005, 15, 122-136.		248
4	Arterial stiffness identification of the human carotid artery using the stress–strain relationship in vivo. Ultrasonics, 2012, 52, 402-411.	3.9	172
5	Pulse Wave Imaging for Noninvasive and Quantitative Measurement of Arterial Stiffness In Vivo. American Journal of Hypertension, 2010, 23, 393-398.	2.0	137
6	Nanohybrid Liposomal Cerasomes with Good Physiological Stability and Rapid Temperature Responsiveness for High Intensity Focused Ultrasound Triggered Local Chemotherapy of Cancer. ACS Nano, 2015, 9, 1280-1293.	14.6	130
7	Pulse wave imaging of the human carotid artery: an in vivo feasibility study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 174-181.	3.0	121
8	Deep Unfolded Robust PCA With Application to Clutter Suppression in Ultrasound. IEEE Transactions on Medical Imaging, 2020, 39, 1051-1063.	8.9	117
9	Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, e12-e23.	2.7	114
10	Axial strain calculation using a low-pass digital differentiator in ultrasound elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 1119-1127.	3.0	110
11	A Novel Noninvasive Technique for Pulse-Wave Imaging and Characterization of Clinically-Significant Vascular Mechanical Properties <i>In Vivo</i> . Ultrasonic Imaging, 2007, 29, 137-154.	2.6	99
12	Pulse Wave Imaging of Normal and Aneurysmal Abdominal Aortas <i>In Vivo</i> . IEEE Transactions on Medical Imaging, 2009, 28, 477-486.	8.9	95
13	Imaging of Wall Motion Coupled With Blood Flow Velocity in the Heart and Vessels in Vivo: A Feasibility Study. Ultrasound in Medicine and Biology, 2011, 37, 980-995.	1.5	95
14	End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging. Optics Letters, 2018, 43, 2752.	3.3	95
15	A composite high-frame-rate system for clinical cardiovascular imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 2221-2233.	3.0	93
16	Myocardial Elastography at Both High Temporal and Spatial Resolution for the Detection of Infarcts. Ultrasound in Medicine and Biology, 2007, 33, 1206-1223.	1.5	84
17	High-frame rate, full-view myocardial elastography with automated contour tracking in murine left ventricles in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 240-248.	3.0	72
18	Deep Learning for Ultrasound Localization Microscopy. IEEE Transactions on Medical Imaging, 2020, 39, 3064-3078.	8.9	72

#	Article	IF	CITATIONS
19	The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials, 2013, 34, 393-401.	11.4	71
20	Reconstructing Undersampled Photoacoustic Microscopy Images Using Deep Learning. IEEE Transactions on Medical Imaging, 2021, 40, 562-570.	8.9	71
21	Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network. Computers in Biology and Medicine, 2020, 116, 103378.	7. O	67
22	Effects of Various Parameters on Lateral Displacement Estimation in Ultrasound Elastography. Ultrasound in Medicine and Biology, 2009, 35, 1352-1366.	1.5	64
23	Ultrasound-Based Carotid Elastography for Detection ofÂVulnerable Atherosclerotic Plaques Validated by MagneticÂResonance Imaging. Ultrasound in Medicine and Biology, 2016, 42, 365-377.	1.5	61
24	Pulse wave imaging in normal, hypertensive and aneurysmal human aortas <i>in vivo</i> : a feasibility study. Physics in Medicine and Biology, 2013, 58, 4549-4562.	3.0	60
25	Tumor-homing, pH- and ultrasound-responsive polypeptide-doxorubicin nanoconjugates overcome doxorubicin resistance in cancer therapy. Journal of Controlled Release, 2017, 264, 66-75.	9.9	58
26	Learning the implicit strain reconstruction in ultrasound elastography using privileged information. Medical Image Analysis, 2019, 58, 101534.	11.6	56
27	Robust Segmentation of Intima–Media Borders With Different Morphologies and Dynamics During the Cardiac Cycle. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1571-1582.	6.3	55
28	A Compressed Sensing Strategy for Synthetic Transmit Aperture Ultrasound Imaging. IEEE Transactions on Medical Imaging, 2017, 36, 878-891.	8.9	53
29	In vivo characterization of the aortic wall stress–strain relationship. Ultrasonics, 2010, 50, 654-665.	3.9	50
30	In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles. International Journal of Nanomedicine, 2014, 9, 33.	6.7	50
31	A Flexible Ultrasound Transducer Array with Micro-Machined Bulk PZT. Sensors, 2015, 15, 2538-2547.	3.8	50
32	Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network. Medical Image Analysis, 2021, 70, 102018.	11.6	46
33	Noninvasive electromechanical wave imaging and conduction-relevant velocity estimation in vivo. Ultrasonics, 2010, 50, 208-215.	3.9	44
34	Thermal memory based photoacoustic imaging of temperature. Optica, 2019, 6, 198.	9.3	44
35	Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method. IEEE Transactions on Medical Imaging, 2017, 36, 225-235.	8.9	43
36	Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system. Journal of Biomedical Optics, 2013, 18, 040505.	2.6	42

#	Article	IF	Citations
37	Application of the wavelet transforms on axial strain calculation in ultrasound elastography. Progress in Natural Science: Materials International, 2006, 16, 942-947.	4.4	41
38	A two-step optical flow method for strain estimation in elastography: Simulation and phantom study. Ultrasonics, 2014, 54, 990-996.	3.9	40
39	Guided waves in pre-stressed hyperelastic plates and tubes: Application to the ultrasound elastography of thin-walled soft materials. Journal of the Mechanics and Physics of Solids, 2017, 102, 67-79.	4.8	40
40	Performance Assessment of HIFU Lesion Detection by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): A 3-D Finite-Element-Based Framework with Experimental Validation. Ultrasound in Medicine and Biology, 2011, 37, 2013-2027.	1.5	39
41	Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient. Optics Letters, 2013, 38, 3696.	3.3	39
42	Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm. Journal of Biomedical Optics, 2014, 19, 046018.	2.6	39
43	Physiologic Cardiovascular Strain and Intrinsic Wave Imaging. Annual Review of Biomedical Engineering, 2011, 13, 477-505.	12.3	38
44	MAP estimation with structural priors for fluorescence molecular tomography. Physics in Medicine and Biology, 2013, 58, 351-372.	3.0	35
45	An adaptive Tikhonov regularization method for fluorescence molecular tomography. Medical and Biological Engineering and Computing, 2013, 51, 849-858.	2.8	34
46	Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM). Physiological Measurement, 2011, 32, 1653-1662.	2.1	33
47	Wide-Angle Tissue Doppler Imaging at High Frame Rate Using Multi-Line Transmit Beamforming: An Experimental Validation In Vivo. IEEE Transactions on Medical Imaging, 2016, 35, 521-528.	8.9	33
48	Direct Reconstruction of Ultrasound Elastography Using an End-to-End Deep Neural Network. Lecture Notes in Computer Science, 2018, , 374-382.	1.3	33
49	Deep image prior for undersampling high-speed photoacoustic microscopy. Photoacoustics, 2021, 22, 100266.	7.8	33
50	A Direct Method With Structural Priors for Imaging Pharmacokinetic Parameters in Dynamic Fluorescence Molecular Tomography. IEEE Transactions on Biomedical Engineering, 2014, 61, 986-990.	4.2	32
51	Aortic pulse wave velocity measured by pulse wave imaging (PWI): A comparison with applanation tonometry. Artery Research, 2011, 5, 65.	0.6	29
52	Bayesian Framework Based Direct Reconstruction of Fluorescence Parametric Images. IEEE Transactions on Medical Imaging, 2015, 34, 1378-1391.	8.9	29
53	Radiomics With Attribute Bagging for Breast Tumor Classification Using Multimodal Ultrasound Images. Journal of Ultrasound in Medicine, 2020, 39, 361-371.	1.7	29
54	Single-heartbeat electromechanical wave imaging with optimal strain estimation using temporally unequispaced acquisition sequences. Physics in Medicine and Biology, 2012, 57, 1095-1112.	3.0	28

#	Article	IF	CITATIONS
55	Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction. Biomedical Optics Express, 2013, 4, 1.	2.9	27
56	Fundamental performance assessment of 2-D myocardial elastography in a phased-array configuration. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 2320-2327.	3.0	26
57	Fluorescence molecular tomography reconstruction via discrete cosine transform-based regularization. Journal of Biomedical Optics, 2015, 20, 055004.	2.6	25
58	Non-Invasive Identification of Vulnerable Atherosclerotic Plaques Using Texture Analysis in Ultrasound Carotid Elastography: An InÂVivo Feasibility Study Validated by Magnetic Resonance Imaging. Ultrasound in Medicine and Biology, 2017, 43, 817-830.	1.5	25
59	A Systematic Investigation of Lateral Estimation Using Various Interpolation Approaches in Conventional Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1149-1160.	3.0	25
60	A threeâ€dimensional freeâ€breathing sequence for simultaneous myocardial T ₁ and T ₂ mapping. Magnetic Resonance in Medicine, 2019, 81, 1031-1043.	3.0	25
61	Performance comparison of rigid and affine models for motion estimation using ultrasound radio-frequency signals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1928-1943.	3.0	24
62	4-D Reconstruction for Dynamic Fluorescence Diffuse Optical Tomography. IEEE Transactions on Medical Imaging, 2012, 31, 2120-2132.	8.9	23
63	Comparison of Different Pulse Waveforms for Local Pulse Wave Velocity Measurement in Healthy and Hypertensive Common Carotid Arteries inÂVivo. Ultrasound in Medicine and Biology, 2016, 42, 1111-1123.	1.5	23
64	An Inverse Method to Determine Arterial Stiffness with Guided Axial Waves. Ultrasound in Medicine and Biology, 2017, 43, 505-516.	1.5	23
65	An ultrasound elastography method to determine the local stiffness of arteries with guided circumferential waves. Journal of Biomechanics, 2017, 51, 97-104.	2.1	23
66	Feature coupling photoacoustic computed tomography for joint reconstruction of initial pressure and sound speed in vivo. Biomedical Optics Express, 2019, 10, 3447.	2.9	23
67	Simulation Study of Amplitude-Modulated (AM) Harmonic Motion Imaging (HMI) for Stiffness Contrast Quantification with Experimental Validation. Ultrasonic Imaging, 2010, 32, 154-176.	2.6	22
68	Compressed Sensing Based Synthetic Transmit Aperture Imaging: Validation in a Convex Array Configuration. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 300-315.	3.0	22
69	Three-dimensional free breathing whole heart cardiovascular magnetic resonance T1 mapping at 3ÂT. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 64.	3.3	22
70	An adaptive support driven reweighted L1-regularization algorithm for fluorescence molecular tomography. Biomedical Optics Express, 2014, 5, 4039.	2.9	21
71	Effects of parameters on the accuracy and precision of ultrasound-based local pulse wave velocity measurement: a simulation study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 2001-2018.	3.0	21
72	Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography. Applied Physics Letters, 2015, 106, .	3.3	21

#	Article	IF	CITATIONS
73	High-Quality Reconstruction of Plane-Wave Imaging Using Generative Adversarial Network., 2018,,.		21
74	ApodNet: Learning for High Frame Rate Synthetic Transmit Aperture Ultrasound Imaging. IEEE Transactions on Medical Imaging, 2021, 40, 3190-3204.	8.9	20
75	Deep weakly-supervised breast tumor segmentation in ultrasound images with explicit anatomical constraints. Medical Image Analysis, 2022, 76, 102315.	11.6	20
76	Generalized Adaptive Gaussian Markov Random Field for X-Ray Luminescence Computed Tomography. IEEE Transactions on Biomedical Engineering, 2018, 65, 2130-2133.	4.2	19
77	A regularization-free elasticity reconstruction method for ultrasound elastography with freehand scan. BioMedical Engineering OnLine, 2014, 13, 132.	2.7	18
78	Coded excitation for diverging wave cardiac imaging: a feasibility study. Physics in Medicine and Biology, 2017, 62, 1565-1584.	3.0	18
79	Performance optimization of lateral displacement estimation with spatial angular compounding. Ultrasonics, 2017, 73, 9-21.	3.9	18
80	Adaptive photoacoustic computed tomography. Photoacoustics, 2021, 21, 100223.	7.8	18
81	Automatic selection of regularization parameters for dynamic fluorescence molecular tomography: a comparison of L-curve and U-curve methods. Biomedical Optics Express, 2016, 7, 5021.	2.9	17
82	Compressed Sensing Based Synthetic Transmit Aperture for Phased Array Using Hadamard Encoded Diverging Wave Transmissions. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1141-1152.	3.0	17
83	Improved Ultrafast Power Doppler Imaging by Using Spatiotemporal Non-Local Means Filtering. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1610-1624.	3.0	17
84	Separating structures of different fluorophore concentrations by principal component analysis on multispectral excitation-resolved fluorescence tomography images. Biomedical Optics Express, 2013, 4, 1829.	2.9	16
85	Evaluating the Significance of Viscoelasticity in Diagnosing Early-Stage Liver Fibrosis with Transient Elastography. PLoS ONE, 2017, 12, e0170073.	2.5	16
86	In vivo assessment of hypertensive nephrosclerosis using ultrasound localization microscopy. Medical Physics, 2022, 49, 2295-2308.	3.0	16
87	Imaging the mechanics and electromechanics of the heart. , 2006, Suppl, 6648-51.		15
88	Resolving fluorophores by unmixing multispectral fluorescence tomography with independent component analysis. Physics in Medicine and Biology, 2014, 59, 5025-5042.	3.0	15
89	Feasibility of Multiplane-Transmit Beamforming for Real-Time Volumetric Cardiac Imaging: A Simulation Study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 648-659.	3.0	15
90	Novel Method for Vessel Cross-Sectional Shear Wave Imaging. Ultrasound in Medicine and Biology, 2017, 43, 1520-1532.	1.5	15

#	Article	IF	CITATIONS
91	Correcting the limited view in opticalâ€resolution photoacoustic microscopy. Journal of Biophotonics, 2018, 11, e201700196.	2.3	15
92	Non-rigid Motion Correction for Ultrasound Localization Microscopy of the Liver in vivo. , 2019, , .		15
93	Interoperator Reproducibility of Carotid Elastography for Identification of Vulnerable Atherosclerotic Plaques. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 505-516.	3.0	15
94	Monitoring of tumor response to cisplatin by subsurface fluorescence molecular tomography. Journal of Biomedical Optics, 2012, 17, 040504.	2.6	14
95	Greedy reconstruction algorithm for fluorescence molecular tomography by means of truncated singular value decomposition conversion. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 437.	1.5	14
96	Elasticity reconstruction for ultrasound elastography using a radial compression: An inverse approach. Ultrasonics, 2006, 44, e195-e198.	3.9	13
97	Fast reconstruction of fluorescence molecular tomography via a permissible region extraction strategy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 1886.	1.5	13
98	Elastic Cherenkov effects in transversely isotropic soft materials-II: Ex vivo and in vivo experiments. Journal of the Mechanics and Physics of Solids, 2016, 94, 181-190.	4.8	13
99	Noninvasive measurement of regional pulse wave velocity in human ascending aorta with ultrasound imaging. Journal of Hypertension, 2016, 34, 2026-2037.	0.5	13
100	Iterative Correction Scheme Based on Discrete Cosine Transform and L1 Regularization for Fluorescence Molecular Tomography With Background Fluorescence. IEEE Transactions on Biomedical Engineering, 2016, 63, 1107-1115.	4.2	13
101	Compressed sensing reconstruction of synthetic transmit aperture dataset for volumetric diverging wave imaging. Physics in Medicine and Biology, 2019, 64, 025013.	3.0	13
102	Streak artifact suppression in photoacoustic computed tomography using adaptive back projection. Biomedical Optics Express, 2019, 10, 4803.	2.9	13
103	Reconstruction of Fluorophore Concentration Variation in Dynamic Fluorescence Molecular Tomography. IEEE Transactions on Biomedical Engineering, 2015, 62, 138-144.	4.2	12
104	High frame rate and high line density ultrasound imaging for local pulse wave velocity estimation using motion matching: A feasibility study on vessel phantoms. Ultrasonics, 2016, 67, 41-54.	3.9	12
105	Doppler-Based Motion Compensation Strategies for 3-D Diverging Wave Compounding and Multiplane-Transmit Beamforming: A Simulation Study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1631-1642.	3.0	12
106	A Comparative Study of Direct and Iterative Inversion Approaches to Determine the Spatial Shear Modulus Distribution of Elastic Solids. International Journal of Applied Mechanics, 2019, 11, 1950097.	2.2	12
107	Evaluating HIFUâ€mediated local drug release using thermal strain imaging: Phantom and preliminary <i>inâ€vivo</i> studies. Medical Physics, 2019, 46, 3864-3876.	3.0	11
108	Coded Excitation for Crosstalk Suppression in Multi-line Transmit Beamforming: Simulation Study and Experimental Validation. Applied Sciences (Switzerland), 2019, 9, 486.	2.5	11

#	Article	IF	Citations
109	Quantitative Analysis of Pleural Line and B-Lines in Lung Ultrasound Images for Severity Assessment of COVID-19 Pneumonia. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 73-83.	3.0	11
110	360° Fourier Transform Profilometry in Surface Reconstruction for Fluorescence Molecular Tomography. IEEE Journal of Biomedical and Health Informatics, 2013, 17, 681-689.	6.3	10
111	Robotized High Intensity Focused Ultrasound (HIFU) system for treatment of mobile organs using motion tracking by ultrasound imaging: An in vitro study. , 2015, 2015, 2571-5.		10
112	Spread spectrum time-resolved diffuse optical measurement system for enhanced sensitivity in detecting human brain activity. Journal of Biomedical Optics, 2017, 22, 045005.	2.6	10
113	2-D Myocardial Deformation Imaging Based on RF-Based Nonrigid Image Registration. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1037-1047.	3.0	10
114	Assessment of Diabetic Kidney Disease Using Ultrasound Localization Microscopy: An in Vivo Feasibility Study in Rats. , 2018, , .		10
115	Diverging wave compounding with spatio-temporal encoding using orthogonal Golay pairs for high frame rate imaging. Ultrasonics, 2018, 89, 155-165.	3.9	10
116	Unsupervised Convolutional Neural Network for Motion Estimation in Ultrasound Elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2236-2247.	3.0	10
117	Reconstruction of Fluorescence Molecular Tomography Using a Neighborhood Regularization. IEEE Transactions on Biomedical Engineering, 2012, 59, 1799-1803.	4.2	9
118	Fluorescence Tomography Reconstruction With Simultaneous Positron Emission Tomography Priors. IEEE Transactions on Multimedia, 2013, 15, 1031-1038.	7.2	9
119	Self-prior strategy for organ reconstruction in fluorescence molecular tomography. Biomedical Optics Express, 2017, 8, 4671.	2.9	9
120	Spatial Angular Compounding With Affine-Model-Based Optical Flow for Improvement of Motion Estimation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 701-716.	3.0	9
121	Estimation and reduction of decorrelation effect due to tissue lateral displacement in elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49, 541-549.	3.0	8
122	In-vivo pulse wave imaging for arterial stiffness measurement under normal and pathological conditions., 2011, 2011, 567-70.		8
123	Simultaneous fluorescence and positron emission tomography for <italic>in vivo</italic> imaging of small animals. Journal of Biomedical Optics, 2011, 16, 120511.	2.6	8
124	Principal component analysis of dynamic fluorescence tomography in measurement space. Physics in Medicine and Biology, 2012, 57, 2727-2742.	3.0	8
125	A hybrid reconstruction algorithm for fluorescence tomography using Kirchhoff approximation and finite element method. Medical and Biological Engineering and Computing, 2013, 51, 7-17.	2.8	8
126	Modified forward model for eliminating the time-varying impact in fluorescence molecular tomography. Journal of Biomedical Optics, 2014, 19, 056012.	2.6	8

#	Article	IF	Citations
127	Fast reconstruction of fluorophore concentration variation based on the derivation of the diffusion equation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 1993.	1.5	8
128	Compressed sensing for high frame rate, high resolution and high contrast ultrasound imaging. , 2015, 2015, 1552-5.		8
129	Acceleration of dynamic fluorescence molecular tomography with principal component analysis. Biomedical Optics Express, 2015, 6, 2036.	2.9	8
130	Direct reconstruction method for time-domain fluorescence molecular lifetime tomography. Optics Letters, 2015, 40, 4038.	3.3	8
131	Multiparametric evaluation of hindlimb ischemia using time-series indocyanine green fluorescence imaging. Journal of Biophotonics, 2017, 10, 456-464.	2.3	8
132	Improving the Subtype Classification of Non-small Cell Lung Cancer by Elastic Deformation Based Machine Learning. Journal of Digital Imaging, 2021, 34, 605-617.	2.9	8
133	Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study. Journal of Biomedical Optics, 2018, 23, 1.	2.6	8
134	Contrast-free Ultrasound Microvascular Imaging for Intraoperative Detection of Human Spinal Cord Tumor: An In vivo Feasibility Study., 2021,,.		8
135	10B-6 A Composite Imaging Technique for High Frame-Rate and Full-View Cardiovascular Ultrasound and Elasticity Imaging. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	7
136	Weighted depth compensation algorithm for fluorescence molecular tomography reconstruction. Applied Optics, 2012, 51, 8883.	1.8	7
137	Acceleration of Early-Photon Fluorescence Molecular Tomography with Graphics Processing Units. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-9.	1.3	7
138	<i>In vivo</i> tomographic imaging of lung colonization of tumour in mouse with simultaneous fluorescence and Xâ€ray CT. Journal of Biophotonics, 2014, 7, 110-116.	2.3	7
139	Nonlinear greedy sparsity-constrained algorithm for direct reconstruction of fluorescence molecular lifetime tomography. Biomedical Optics Express, 2016, 7, 1210.	2.9	7
140	Unmixing multiple adjacent fluorescent targets with multispectral excited fluorescence molecular tomography. Applied Optics, 2016, 55, 4843.	2.1	7
141	Reconstruction of high-resolution early-photon tomography based on the first derivative of temporal point spread function. Journal of Biomedical Optics, 2018, 23, 1.	2.6	7
142	P4A-2 An In-Vivo Study of Frame Rate Optimization for Myocardial Elastography. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	6
143	Monitoring of Tumor Response to Au Nanorod-Indocyanine Green Conjugates Mediated Therapy With Fluorescence Imaging and Positron Emission Tomography. IEEE Transactions on Multimedia, 2013, 15, 1025-1030.	7.2	6
144	Self-Supervised Learning of a Deep Neural Network for Ultrafast Ultrasound Imaging as an Inverse Problem. , 2020, , .		6

#	Article	IF	Citations
145	Acceleration of reconstruction for compressed sensing based synthetic transmit aperture imaging by using in-phase/quadrature data. Ultrasonics, 2022, 118, 106576.	3.9	6
146	A net-shaped multicellular formation facilitates the maturation of hPSC-derived cardiomyocytes through mechanical and electrophysiological stimuli. Aging, 2018, 10, 532-548.	3.1	6
147	Early-photon guided reconstruction method for time-domain fluorescence lifetime tomography. Chinese Optics Letters, 2016, 14, 071702.	2.9	6
148	Machine-learning enhanced photoacoustic computed tomography in a limited view configuration. , 2019, , .		6
149	Tikhonov-regularization-based projecting sparsity pursuit method for fluorescence molecular tomography reconstruction. Chinese Optics Letters, 2020, 18, 011701.	2.9	6
150	Localization of High-concentration Microbubbles for Ultrasound Localization Microscopy by Self-Supervised Deep Learning. , 2021, , .		6
151	11B-1 Noninvasive Electromechanical Wave Imaging and Conduction Velocity Estimation In Vivo. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	5
152	Safety of fast cardiac imaging using multiple transmit beams: Experimental verification. , 2014, , .		5
153	Reconstruction of in vivo fluorophore concentration variation with structural priors and smooth penalty. Applied Optics, 2016, 55, 2732.	2.1	5
154	In vivosimultaneous multispectral fluorescence imaging with spectral multiplexed volume holographic imaging system. Journal of Biomedical Optics, 2016, 21, 060502.	2.6	5
155	Effects of temperature on multiparametric evaluation of hindlimb ischemia with dynamic fluorescence imaging. Journal of Biophotonics, 2017, 10, 811-820.	2.3	5
156	A Deep Learning Trial on Transient Elastography for Assessment of Liver Fibrosis., 2018,,.		5
157	Super-Resolution Ultrasound Imaging by Sparse Bayesian Learning Method. IEEE Access, 2019, 7, 47197-47205.	4.2	5
158	Fast Randomized Singular Value Decomposition-Based Clutter Filtering for Shear Wave Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2363-2377.	3.0	5
159	Photoacoustic imaging of in vivo hemodynamic responses to sodium nitroprusside. Journal of Biophotonics, 2021, 14, e202000478.	2.3	5
160	Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging. Journal of Biomedical Optics, 2017, 22, 1.	2.6	5
161	A General Framework for Inverse Problem Solving using Self-Supervised Deep Learning: Validations in Ultrasound and Photoacoustic Image Reconstruction. , 2021, , .		5
162	Improved Background Noise Suppression in Ultrasound Localization Microscopy using Spatial Coherence Beamforming., 2021,,.		5

#	Article	IF	CITATIONS
163	Detection of murine infarcts using myocardial elastography at both high temporal and spatial resolution., 2006, 2006, 1552-5.		4
164	Characterization of the stress-strain relationship of the abdominal aortic wall in vivo. , 2009, 2009, 1960-3.		4
165	Fundamental analysis of lateral displacement estimation quality in ultrasound elastography., 2009,,.		4
166	INFLUENCE OF LIMITED-PROJECTION ON FLUORESCENCE MOLECULAR TOMOGRAPHY. Journal of Innovative Optical Health Sciences, 2012, 05, 1250020.	1.0	4
167	Subsurface fluorescence molecular tomography with prior information. Applied Optics, 2014, 53, 402.	1.8	4
168	Ultrasound signal wavelet analysis to quantify the microstructures of normal and frozen tissues in vitro. Cryobiology, 2014, 68, 29-34.	0.7	4
169	Identification of early atherosclerotic lesions in carotid arteries with quantitative characteristics measured by 3D MRI. Journal of Magnetic Resonance Imaging, 2016, 44, 1270-1276.	3.4	4
170	Spectral selective fluorescence molecular imaging with volume holographic imaging system. Journal of Innovative Optical Health Sciences, 2016, 09, 1650010.	1.0	4
171	Self-guided reconstruction for time-domain fluorescence molecular lifetime tomography. Journal of Biomedical Optics, 2016, 21, 126012.	2.6	4
172	Fast direct reconstruction strategy of dynamic fluorescence molecular tomography using graphics processing units. Journal of Biomedical Optics, 2016, 21, 066010.	2.6	4
173	Electromagnetic tracking-based freehand 3D quasi-static elastography with 1D linear array: a phantom study. Physics in Medicine and Biology, 2018, 63, 245006.	3.0	4
174	Depth-recognizable time-domain fluorescence molecular tomography in reflective geometry. Biomedical Optics Express, 2021, 12, 3806.	2.9	4
175	Fast reconstruction in fluorescence molecular tomography using data compression of intra- and inter-projections. Chinese Optics Letters, 2015, 13, 071002-71006.	2.9	4
176	Partial Hadamard encoded synthetic transmit aperture for high frame rate imaging with minimal l ₂ -norm least squares method. Physics in Medicine and Biology, 2022, 67, 105002.	3.0	4
177	Fundamental performance assessment of 2-D myocardial elastography in a phased array configuration. , 2008, , .		3
178	A fast motion and strain estimation method. , 2010, , .		3
179	Simulation of HMIFU (Harmonic Motion Imaging for Focused Ultrasound) with in-vitro validation. , 2010, , .		3
180	A fast surface reconstruction method for fluorescence molecular tomography based on cross-beam edge back projection. Measurement: Journal of the International Measurement Confederation, 2013, 46, 1565-1571.	5.0	3

#	Article	IF	Citations
181	Depth compensation in fluorescence molecular tomography using an adaptive support driven reweighted L1-minimization algorithm. Proceedings of SPIE, 2014, , .	0.8	3
182	2D RF-based non-rigid image registration for cardiac motion estimation: Comparison against block matching. , 2016, , .		3
183	Reduction of blurring in broadband volume holographic imaging using a deconvolution method. Biomedical Optics Express, 2016, 7, 3124.	2.9	3
184	Shape-based reconstruction of dynamic fluorescent yield with a level set method. BioMedical Engineering OnLine, 2016, 15, 6.	2.7	3
185	A Noninvasive Sonographic Study of Multisite Atherosclerosis in an Elderly Chinese Population. Journal of Ultrasound in Medicine, 2017, 36, 639-647.	1.7	3
186	Excitation-resolved multispectral method for imaging pharmacokinetic parameters in dynamic fluorescent molecular tomography. Journal of Biomedical Optics, 2017, 22, 046003.	2.6	3
187	A Novel Normalized Cross-Correlation Speckle-Tracking Ultrasound Algorithm for the Evaluation of Diaphragm Deformation. Frontiers in Medicine, 2021, 8, 612933.	2.6	3
188	Phase Constraint Improves Ultrasound Image Quality Reconstructed using Deep Neural Network. , 2021, , .		3
189	A 3D Motion Compensation Method for High Frame Rate Volumetric Ultrasound Imaging based on Velocity Vector Estimation: A Simulation Study. , 2020, , .		3
190	Hadamard-Encoded Synthetic Transmit Aperture Imaging for Improved Lateral Motion Estimation in Ultrasound Elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1204-1218.	3.0	3
191	AUTOMATED CONTOUR TRACKING FOR MYOCARDIAL ELASTOGRAPHY IN VIVO. , 2007, , .		2
192	Key parameters for precise lateral displacement estimation in ultrasound elastography., 2009, 2009, 4407-10.		2
193	Response to "Potentials and Pitfalls of Local PWV Measurements". American Journal of Hypertension, 2010, 23, 935-935.	2.0	2
194	Regional measurement of arterial stiffness using Pulse Wave Imaging (PWI): Phantom validation and preliminary clinical results. , 2010, , .		2
195	Pulse Wave Ultrasound Manometry (PWUM): Measuring central blood pressure non-invasively. , 2011, , .		2
196	Pulse Wave Imaging (PWI) and arterial stiffness measurement of the human carotid artery: An in vivo feasibility study. , 2011 , , .		2
197	Effects of key parameters on the accuracy and precision of local pulse wave velocity measurement by ultrasound imaging., 2014, 2014, 2877-80.		2
198	Monitoring of tumor response to cisplatin with simultaneous fluorescence and positron emission tomography: a feasibility study. Journal of Biophotonics, 2014, 7, 889-896.	2.3	2

#	Article	IF	Citations
199	Highly-efficient quantitative fluorescence resonance energy transfer measurements based on deep learning. Journal of Innovative Optical Health Sciences, 2020, 13, 2050021.	1.0	2
200	qULM-DL: Quantitative Ultrasound Localization Microscopy via Deep Learning., 2020,,.		2
201	In Vivo Assessment of Diabetic Kidney Disease using Ultrasound Localization Microscopy. , 2021, , .		2
202	Pleural line and B-lines based image analysis for severity evaluation of COVID-19 pneumonia., 2021,,.		2
203	A Deep Learning Method for Reduction of Microbubble Accumulation Time in Ultrasound Localization Microscopy. , 2020, , .		2
204	A novel rat model of cerebral small vessel disease and evaluation by super-resolution ultrasound imaging. Journal of Neuroscience Methods, 2022, 379, 109673.	2.5	2
205	2I-4 Pulse Wave Imaging in Murine Abdominal Aortas: A Feasibility Study. , 2006, , .		1
206	9C-5 2D Simulation of the Harmonic Motion Imaging (HMI) with Experimental Validation. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	1
207	9A-1 Experimental Assessment of Angle-Independent Myocardial Elastography Performance Using a Left-Ventricular Phantom Undergoing Physiologic Motion. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	1
208	Mapping of Regional Cancerous Tissue Mechanical Property Changes Using Harmonic Motion Imaging. , 2007, , .		1
209	AneuMastat reduces aneurysm incidence in the angiotensin II (AngII)-induced model of abdominal aortic aneurysm (AAA) in the wildtype C57BL6 mouse. Journal of the American College of Surgeons, 2007, 205, S111.	0.5	1
210	A comprehensive framework for Harmonic Motion Imaging for Focused Ultrasound (HMIFU) with ex vivo validation. , 2011, , .		1
211	A regularization-free Young's modulus reconstruction algorithm for ultrasound elasticity imaging. , 2013, 2013, 1132-5.		1
212	A feasibility study of ultrasound B-mode and strain imaging for risk assessment of carotid atherosclerotic plaques validated by magnetic resonance imaging., 2013,,.		1
213	A feasibility study of carotid elastography for risk assessment of atherosclerotic plaques validated by magnetic resonance imaging. Proceedings of SPIE, 2014, , .	0.8	1
214	Wide-angle tissue Doppler imaging at high frame rate using multi-line transmit beamforming: An in-vivo pilot study. , 2014, , .		1
215	Effects of key parameters on the performance of local pulse wave velocity measurement: Theroretial analysis and in-vivo validation., 2014,,.		1
216	Tunable narrowband volume holographic imaging spectrometer for macroscopic fluorescence molecular tomography. Optical Engineering, 2016, 55, 123113.	1.0	1

#	Article	IF	CITATIONS
217	Compressed sensing based synthetic transmit aperture for phased array imaging. , 2017, , .		1
218	Notice of Removal: Feasibility of thermal strain imaging in noninvasive monitoring of HIFU-mediated local drug delivery. , $2017, , .$		1
219	Cardiac Deformation Imaging Based on Coherent Compounding of Diverging Waves with Coded Excitation., 2018,,.		1
220	S-Sequence Encoded Multiplane Wave Imaging: Phantom and In-Vivo Validation. , 2018, , .		1
221	2D Motion Estimation Based on Diverging Wave Coherent Compounding and Transverse Oscillations. , 2018, , .		1
222	Performance Optimization of Compressed Sensing Based Synthetic Transmit Aperture Using Hadamard Matrix Encoding. , $2018, \ldots$		1
223	Pulse Wave Imaging for Assessing Arterial Stiffness Change in A Mouse Model of Thoracic Aortic Dissection in Marfan Syndrome. , 2019, , .		1
224	Photoacoustic computed tomography for joint reconstruction of initial pressure and sound speed in vivo using a feature coupling method., 2019 ,,.		1
225	Ultrasound Image Reconstruction by Self-Supervised Deep Neural Network A Study on Coherent Compounding Strategy., 2021,,.		1
226	Partial Hadamard Encoded Synthetic Transmit Aperture for High Frame Rate Imaging with Minimal l2-Norm Least Square Method., 2021,,.		1
227	Semi-supervised deep learning for breast anatomy decomposition in ultrasound images. , 2021, , .		1
228	Recovery of Full Synthetic Transmit Aperture Dataset with Well-preserved Phase Information by Self-supervised Deep Learning., 2021,,.		1
229	Intraoperative Ultrasound Localization Microscopy of Human Spinal Cord: An In Vivo Feasibility Study., 2020, , .		1
230	Improved Ultrasound Imaging Performance with Complex Cumulant Analysis. IEEE Transactions on Biomedical Engineering, 2022, PP, 1-1.	4.2	1
231	SAturationâ€recovery and Variableâ€flipâ€Angle (SAVA) based threeâ€dimensional freeâ€breathing cardiovascular magnetic resonance T ₁ mapping at 3T. NMR in Biomedicine, 2022, , e4755.	2.8	1
232	Multi-segmented feature coupling for jointly reconstructing initial pressure and speed of sound in photoacoustic computed tomography. Journal of Biomedical Optics, 2022, 27, .	2.6	1
233	Theoretical analysis of tissue axial stretching model in elastography*. Progress in Natural Science: Materials International, 2004, 14, 430-438.	4.4	0
234	11B-5 Pulse Wave Imaging Of Abdominal Aortic Aneurysms: Comparison Between Control And Angiotensin II-Treated Mice In Vivo. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	0

#	Article	IF	CITATIONS
235	P4A-1 Automated Contour Tracking For High Frame-Rate, Full-View Myocardial Elastography In Vivo. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	0
236	Pulse wave imaging of human abdominal aortas in vivo. , 2008, , .		0
237	Simultaneous imaging of wall motion and flow velocity in the hearts and vessels of mice in vivo: A feasibility study. , 2011 , , .		0
238	Tomographic imaging of ratiometric fluorescence resonance energy transfer in scattering media. Applied Optics, 2012, 51, 5044.	1.8	0
239	Fundamental analysis and ex vivo validation of thermal lesion mapping using harmonic motion imaging for focused ultrasound (HMIFU). , 2012, , .		0
240	Fast photon-boundary intersection computation for Monte Carlo simulation of photon migration. Optical Engineering, 2013, 52, 019001.	1.0	0
241	A dual-excitation approach for dynamic fluorescence molecular tomography. , 2014, , .		0
242	Projected restarted framework for tomographic reconstruction. Proceedings of SPIE, 2014, , .	0.8	0
243	A new ultrasound imaging indicator for vulnerability evaluatation of carotid atherosclerotic plaques. , 2014, , .		0
244	Performance comparison of rigid and affine models for motion estimation using ultrasound RF signals: Simulations and phantom experiments. , 2015, , .		0
245	Image reconstruction for synchronous data acquisition in fluorescence molecular tomography. Journal of X-Ray Science and Technology, 2015, 23, 463-472.	1.0	0
246	Compressed sensing for synthetic transmit aperture., 2015,,.		0
247	High line-density pulse wave imaging for local pulse wave velocity estimation using motion matching: A feasibility study on vessel phantoms. , 2015, , .		0
248	Pulse wave velocity measurement in healthy and diseased carotid arteries in vivo., 2015,,.		0
249	Multispectral excitation based multiple fluorescent targets resolving in fluorescence molecular tomography. Proceedings of SPIE, 2016, , .	0.8	0
250	Enhanced imaging resolution in dynamic fluorescence molecular tomography by multispectral excitation method (Conference Presentation)., 2017,,.		0
251	Performance comparison of optical flow and block matching methods in shearing and rotating models. Proceedings of SPIE, 2017, , .	0.8	0
252	Motion compensation and sequence optimization for 3D diverging wave compounding: A simulation study. Proceedings of Meetings on Acoustics, 2017, , .	0.3	0

#	Article	IF	CITATIONS
253	Notice of Removal: Performance comparison of optical flow and block matching methods for strain estimation in spatial angular compounding with plane wave. , 2017, , .		O
254	Notice of Removal: Suppression of reflected waves with high-resolution Radon transform for accurate measurement of regional pulse wave velocity. , 2017 , , .		0
255	Notice of Removal: Orthogonal Golay pairs-coded diverging wave compounding for high-quality and high-frame-rate ultrasound imaging. , 2017, , .		0
256	An optical flow method for elastography at large strains using three image frames. , 2017, , .		0
257	Notice of Removal: Guided wave elastography of press-stressed thin-walled soft tissues. , 2017, , .		0
258	Notice of Removal: An MRI-compatible mock model for intra-cardiac flow imaging. , 2017, , .		0
259	Notice of Removal: Motion correction for multi-plane-transmit beamforming: A simulation study. , 2017, , .		0
260	Compressed sensing based synthetic transmit aperture for phased array imaging. , 2017, , .		0
261	An optical flow method for elastography at large compression using three image frames. , 2017, , .		0
262	Comparison of different motion estimation methods for vessel cross-sectional shear wave imaging. , 2017, , .		0
263	Notice of Removal: Guided wave elastography of pressurized artery in both longitudinal and transverse sections: Validation in phantom experiments. , 2017, , .		0
264	Notice of Removal: Archimedean spiral based compounding for high quality and high frame rate convex array imaging. , $2017, \dots$		0
265	Comparison of different motion estimation methods for vessel cross-sectional shear wave imaging. , 2017, , .		0
266	Notice of Removal: Comparison of motion corrected multi-plane-transmit beamforming and 3D diverging wave compounding: A simulation study. , 2017, , .		0
267	Quantitative evaluation of graded hindlimb ischemia based on pharmacokinetic modelling and hemodynamic analysis of indocyanine green. Physiological Measurement, 2018, 39, 015009.	2.1	0
268	Influence of Factors on Motion Artifacts in Strain Estimation with Spatial Angular Compounding. , 2018, , .		0
269	An in vivo Comparison of Principal and Polar Strains in Carotid Atherosclerotic Plaques. , 2019, , .		0
270	Multi-plane-transmit (MPT) Volumetric Imaging based on A Matrix Array: Experimental Validation. , 2019, , .		0

#	ARTICLE	IF	CITATIONS
271	Compact multispectral fluorescence imaging system with spectral multiplexed volume holographic grating. Proceedings of SPIE, 2016, , .	0.8	0
272	Enhancing in vivo renal ischemia assessment by high-dynamic-range fluorescence molecular imaging. Journal of Biomedical Optics, 2018, 23, 1.	2.6	0
273	Deep learning for super-resolution localization microscopy. , 2018, , .		0
274	Perivascular Space Detection by Using Contrast-enhanced Ultrafast Power Doppler Imaging: A Feasibility Study., 2021, , .		0
275	Weakly-supervised deep learning for breast tumor segmentation in ultrasound images. , 2021, , .		0
276	A Self-supervised Deep Learning Approach for High Frame Rate Plane Wave Beamforming with Two-way Dynamic Focusing., 2021,,.		0
277	Hadamard-encoded synthetic transmit aperture imaging for improvement of strain estimation. , 2021, , .		0
278	Detection of murine infarcts using myocardial elastography at both high temporal and spatial resolution. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
279	Influence of key parameters on motion artifacts in lateral strain estimation with spatial angular compounding. Ultrasonics, 2022, 125, 106799.	3.9	0