Judith L Bronstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2018941/publications.pdf

Version: 2024-02-01

159585 102487 4,859 89 30 66 citations g-index h-index papers 91 91 91 4912 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sex differences in the foraging behavior of a generalist hawkmoth. Insect Science, 2022, 29, 304-314.	3.0	6
2	Nectar dynamics and the coexistence of two plants that share a pollinator. Oikos, 2022, 2022, .	2.7	1
3	Ecoâ€evolutionary feedbacks among pollinators, herbivores, and their plant resources. Evolution; International Journal of Organic Evolution, 2022, 76, 1287-1300.	2.3	4
4	Flight-Fecundity Trade-offs: A Possible Mechanistic Link in Plant–Herbivore–Pollinator Systems. Frontiers in Plant Science, 2022, 13, 843506.	3.6	1
5	Safeguarding human–wildlife cooperation. Conservation Letters, 2022, 15, .	5.7	12
6	The ecology and evolution of humanâ€wildlife cooperation. People and Nature, 2022, 4, 841-855.	3.7	15
7	Optimal Defense Theory in an ant–plant mutualism: Extrafloral nectar as an induced defence is maximized in the most valuable plant structures. Journal of Ecology, 2021, 109, 167-178.	4.0	30
8	The Gift That Keeps on Giving: Why Does Biological Diversity Accumulate Around Mutualisms?., 2021,, 283-306.		4
9	Coevolutionary transitions from antagonism to mutualism explained by the Co-Opted Antagonist Hypothesis. Nature Communications, 2021, 12, 2867.	12.8	15
10	The Evolution of Resource Provisioning in Pollination Mutualisms. American Naturalist, 2021, 198, 441-459.	2.1	4
11	The Sensory and Cognitive Ecology of Nectar Robbing. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6
12	Advancing an interdisciplinary framework to study seed dispersal ecology. AoB PLANTS, 2020, 12, plz048.	2.3	30
13	Variation in the production of plant tissues bearing extrafloral nectaries explains temporal patterns of ant attendance in Amazonian understorey plants. Journal of Ecology, 2020, 108, 1578-1591.	4.0	19
14	Bumble bees are constant to nectar-robbing behaviour despite low switching costs. Animal Behaviour, 2020, 170, 177-188.	1.9	3
15	Our Current Understanding of Commensalism. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 167-189.	8.3	39
16	Noisy communities and signal detection: why do foragers visit rewardless flowers?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190486.	4.0	11
17	Generalising indirect defence and resistance of plants. Ecology Letters, 2020, 23, 1137-1152.	6.4	53
18	Interactions among interactions: The dynamical consequences of antagonism between mutualists. Journal of Theoretical Biology, 2020, 501, 110334.	1.7	1

#	Article	IF	CITATIONS
19	Competition for nectar resources does not affect bee foraging tactic constancy. Ecological Entomology, 2020, 45, 904-909.	2.2	11
20	How high are the costs inflicted by an herbivorous pollinator?. Arthropod-Plant Interactions, 2020, 14, 387-397.	1.1	4
21	The population ecology of undesigned systems: an analysis of the Arizona charter school system. Journal of Organization Design, 2020, 9, $1.$	1.2	1
22	Nectar quality affects ant aggressiveness and biotic defense provided to plants. Biotropica, 2019, 51, 196-204.	1.6	27
23	Sex differences in pollinator behavior: Patterns across species and consequences for the mutualism. Journal of Animal Ecology, 2019, 88, 971-985.	2.8	25
24	Coexistence and competitive exclusion in mutualism. Ecology, 2019, 100, e02708.	3.2	67
25	Infrapopulation size and mate availability influence reproductive success of a parasitic plant. Journal of Ecology, 2018, 106, 1972-1982.	4.0	6
26	Learning about larceny: experience can bias bumble bees to rob nectar. Behavioral Ecology and Sociobiology, 2018, 72, 1.	1.4	14
27	Foraging preferences of leafcutter bees in three contrasting geographical zones. Diversity and Distributions, 2018, 24, 621-628.	4.1	13
28	Linkages between nectaring and oviposition preferences of Manduca sexta on two coâ€blooming Datura species in the Sonoran Desert. Ecological Entomology, 2018, 43, 85-92.	2.2	11
29	Reproductive ecology of a parasitic plant differs by host species: vector interactions and the maintenance of host races. Oecologia, 2018, 186, 471-482.	2.0	12
30	"Her Joyous Enthusiasm for Her Life-Work …― Early Women Authors in <i>The American Naturalist</i> . American Naturalist, 2018, 192, 655-663.	2.1	7
31	Consequences of secondary nectar robbing for male components of plant reproduction. American Journal of Botany, 2018, 105, 943-949.	1.7	3
32	Costs and benefits of alternative food handling tactics help explain facultative exploitation of pollination mutualisms. Ecology, 2018, 99, 1815-1824.	3.2	17
33	Empowering peer reviewers with a checklist to improve transparency. Nature Ecology and Evolution, 2018, 2, 929-935.	7.8	26
34	Why are some plant–nectar robber interactions commensalisms?. Oikos, 2018, 127, 1679-1689.	2.7	8
35	Synthesizing perspectives on the evolution of cooperation within and between species. Evolution; International Journal of Organic Evolution, 2017, 71, 814-825.	2.3	36
36	Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecology Letters, 2017, 20, 385-394.	6.4	246

#	Article	IF	Citations
37	Foraging strategy predicts foraging economy in a facultative secondary nectar robber. Oikos, 2017, 126, 1250-1257.	2.7	12
38	The behavioral ecology of nectar robbing: why be tactic constant?. Current Opinion in Insect Science, 2017, 21, 14-18.	4.4	27
39	Facilitated exploitation of pollination mutualisms: fitness consequences for plants. Journal of Ecology, 2017, 105, 188-196.	4.0	20
40	Duality of interaction outcomes in a plant–frugivore multilayer network. Oikos, 2017, 126, 361-368.	2.7	48
41	Temporal Structure in Cooperative Interactions: What Does the Timing of Exploitation Tell Us about Its Cost?. PLoS Biology, 2016, 14, e1002371.	5.6	15
42	Few Ant Species Play a Central Role Linking Different Plant Resources in a Network in Rupestrian Grasslands. PLoS ONE, 2016, 11, e0167161.	2.5	35
43	Later flowering is associated with a compressed flowering season and reduced reproductive output in an early season floral resource. Oikos, 2016, 125, 821-828.	2.7	24
44	Contextual organismality: Beyond pattern to process in the emergence of organisms. Evolution; International Journal of Organic Evolution, 2016, 70, 2669-2677.	2.3	10
45	From Lichens to the Law: Cooperation as a Theme in the Diverse Career of Roscoe Pound. American Naturalist, 2016, 188, ii-iii.	2.1	3
46	â€~Hide and seek' is no game in a specialized ant–plant interaction. New Phytologist, 2016, 211, 1150-115	517.3	0
47	Leveraging nature's backup plans to incorporate interspecific interactions and resilience into restoration. Restoration Ecology, 2016, 24, 434-440.	2.9	9
48	A Balanced Data Archiving Policy for Long-Term Studies. Trends in Ecology and Evolution, 2016, 31, 84-85.	8.7	17
49	Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism. Ecology Letters, 2015, 18, 1270-1284.	6.4	126
50	Active pollinator choice by Heliconia â€~fits the bill'. Trends in Plant Science, 2015, 20, 403-404.	8.8	1
51	The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth. Oecologia, 2015, 179, 435-446.	2.0	15
52	Phenological shifts and the fate of mutualisms. Oikos, 2015, 124, 14-21.	2.7	137
53	The study of mutualism. , 2015, , 3-19.		50
54	Minute pollinators: The role of thrips (Thysanoptera) as pollinators of pointleaf manzanita, (Ericaceae). Journal of Pollination Ecology, 2015, 16, 64-71.	0.5	4

#	Article	IF	Citations
55	How context dependent are species interactions?. Ecology Letters, 2014, 17, 881-890.	6.4	480
56	Spatioâ€temporal Genetic Structure of a Tropical Bee Species Suggests High Dispersal Over a Fragmented Landscape. Biotropica, 2014, 46, 202-209.	1.6	17
57	Secondary extinctions of biodiversity. Trends in Ecology and Evolution, 2014, 29, 664-672.	8.7	134
58	Understanding evolution and the complexity of species interactions using orchids as a model system. New Phytologist, 2014, 202, 373-375.	7.3	23
59	Proteases hold the key to an exclusive mutualism. Molecular Ecology, 2013, 22, 3882-3884.	3.9	0
60	The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges. Annals of Botany, 2013, 111, 1243-1250.	2.9	132
61	Choice of oviposition sites by <i><scp>M</scp>anduca sexta</i> and its consequences for egg and larval performance. Entomologia Experimentalis Et Applicata, 2012, 144, 286-293.	1.4	23
62	A General Scheme to Predict Partner Control Mechanisms in Pairwise Cooperative Interactions Between Unrelated Individuals. Ethology, 2011, 117, 271-283.	1.1	45
63	Why do some, but not all, tropical birds migrate? A comparative study of diet breadth and fruit preference. Evolutionary Ecology, 2011, 25, 219-236.	1.2	36
64	The function of polydomy: the ant Crematogaster torosa preferentially forms new nests near food sources and fortifies outstations. Behavioral Ecology and Sociobiology, 2011, 65, 959-968.	1.4	40
65	A NEW APPROACH TO TEACHING EVOLUTION. Evolution; International Journal of Organic Evolution, 2010, 64, 1861-1863.	2.3	0
66	Nectar Robbing: Ecological and Evolutionary Perspectives. Annual Review of Ecology, Evolution, and Systematics, 2010, 41, 271-292.	8.3	275
67	For antâ€protected plants, the best defense is a hungry offense. Ecology, 2009, 90, 2823-2831.	3.2	93
68	Reproductive biology of Datura wrightii: the benefits of a herbivorous pollinator. Annals of Botany, 2009, 103, 1435-1443.	2.9	66
69	Ecoâ€Evolutionary Dynamics of Mutualists and Exploiters. American Naturalist, 2009, 174, 780-794.	2.1	66
70	Nectar usage in a southern Arizona hawkmoth community. Ecological Entomology, 2008, 33, 503-509.	2.2	67
71	The evolution of plant–insect mutualisms. New Phytologist, 2006, 172, 412-428.	7.3	390
72	ENVIRONMENTAL FORCING AND THE COMPETITIVE DYNAMICS OF A GUILD OF CACTUS-TENDING ANT MUTUALISTS. Ecology, 2005, 86, 3190-3199.	3.2	24

#	Article	IF	Citations
73	ATTRACTING ANTAGONISTS: DOES FLORAL NECTAR INCREASE LEAF HERBIVORY?. Ecology, 2004, 85, 1519-1526.	3.2	120
74	Ecological Dynamics of Mutualist/Antagonist Communities. American Naturalist, 2003, 162, S24-S39.	2.1	126
7 5	Pollination mode in fig wasps: the predictive power of correlated traits. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1113-1121.	2.6	105
76	Selfâ€pollination and its costs in a monoecious fig (Ficus aurea, Moraceae) in a highly seasonal subtropical environment. American Journal of Botany, 2001, 88, 685-692.	1.7	29
77	The exploitation of mutualisms. Ecology Letters, 2001, 4, 277-287.	6.4	441
78	The Contribution of Ant-Plant Protection Studies to Our Understanding of Mutualism1. Biotropica, 1998, 30, 150-161.	1.6	261
79	Do fig wasps interfere with each other during oviposition?. Entomologia Experimentalis Et Applicata, 1998, 87, 321-324.	1.4	19
80	Costs of two non-mutualistic species in a yucca/yucca moth mutualism. Oecologia, 1997, 112, 379.	2.0	26
81	Variation in reproductive success within a subtropical fig/pollinator mutualism. Journal of Biogeography, 1996, 23, 433-446.	3.0	49
82	Waiting for wasps: consequences for the pollination dynamics of Ficus pertusa L Journal of Biogeography, 1996, 23, 459-466.	3.0	31
83	Site variation in reproductive synchrony in three neotropical figs. Journal of Biogeography, 1996, 23, 477-486.	3.0	31
84	Infertile seeds of Yucca schottii: A beneficial role for the plant in the yucca-yucca moth mutualism?. Evolutionary Ecology, 1996, 10, 63-76.	1.2	24
85	The plant—pollinator landscape. , 1995, , 256-288.		60
86	Causes and Consequences of Within-Tree Phenological Patterns in the Florida Strangling Fig, Ficus aurea (Moraceae). American Journal of Botany, 1992, 79, 41.	1.7	20
87	CAUSES AND CONSEQUENCES OF WITHINâ€TREE PHENOLOGICAL PATTERNS IN THE FLORIDA STRANGLING FIG, FICUS AUREA (MORACEAE). American Journal of Botany, 1992, 79, 41-48.	1.7	49
88	The Nonpollinating Wasp Fauna of Ficus pertusa: Exploitation of a Mutualism?. Oikos, 1991, 61, 175.	2.7	91
89	The Ecological Consequences of Flowering Asynchrony in Monoecious Figs: A Simulation Study. Ecology, 1990, 71, 2145-2156.	3.2	125