
Ogun Adebali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2018597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes. PLoS Computational Biology, 2016, 12, e1004862.	3.2	147
2	Dynamic maps of UV damage formation and repair for the human genome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6758-6763.	7.1	131
3	Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nature Communications, 2019, 10, 309.	12.8	131
4	MiST 3.0: an updated microbial signal transduction database with an emphasis on chemosensory systems. Nucleic Acids Research, 2020, 48, D459-D464.	14.5	129
5	Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo[a]pyrene. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6752-6757.	7.1	76
6	Genome-wide transcription-coupled repair in <i>Escherichia coli</i> is mediated by the Mfd translocase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2116-E2125.	7.1	71
7	CDvist: a webserver for identification and visualization of conserved domains in protein sequences. Bioinformatics, 2015, 31, 1475-1477.	4.1	69
8	Cisplatin-DNA adduct repair of transcribed genes is controlled by two circadian programs in mouse tissues. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4777-E4785.	7.1	65
9	Molecular mechanisms and genomic maps of DNA excision repair in Escherichia coli and humans. Journal of Biological Chemistry, 2017, 292, 15588-15597.	3.4	64
10	Genome-wide mapping of nucleotide excision repair with XR-seq. Nature Protocols, 2019, 14, 248-282.	12.0	48
11	Genome-wide excision repair in Arabidopsis is coupled to transcription and reflects circadian gene expression patterns. Nature Communications, 2018, 9, 1503.	12.8	43
12	Mfd translocase is necessary and sufficient for transcription-coupled repair in Escherichia coli. Journal of Biological Chemistry, 2017, 292, 18386-18391.	3.4	39
13	Single-nucleotide resolution dynamic repair maps of UV damage in <i>Saccharomyces cerevisiae</i> genome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3408-E3415.	7.1	36
14	Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations. Genetics in Medicine, 2016, 18, 1029-1036.	2.4	31
15	The Mutation Profile of SARS-CoV-2 Is Primarily Shaped by the Host Antiviral Defense. Viruses, 2021, 13, 394.	3.3	30
16	Phylogenetic analysis of SARS-CoV-2 genomes in Turkey. Turkish Journal of Biology, 2020, 44, 146-156.	0.8	17
17	Nucleotide excision repair capacity increases during differentiation of human embryonic carcinoma cells into neurons and muscle cells. Journal of Biological Chemistry, 2019, 294, 5914-5922.	3.4	16
18	Class III Histidine Kinases: a Recently Accessorized Kinase Domain in Putative Modulators of Type IV Pilus-Based Motility. Journal of Bacteriology, 2017, 199, .	2.2	14

Ogun Adebali

#	Article	IF	CITATIONS
19	Aquerium: A web application for comparative exploration of domainâ€based protein occurrences on the taxonomically clustered genome tree. Proteins: Structure, Function and Bioinformatics, 2017, 85, 72-77.	2.6	14
20	SURF1 related Leigh syndrome: Clinical and molecular findings of 16 patients from Turkey. Molecular Genetics and Metabolism Reports, 2020, 25, 100657.	1.1	10
21	The utility of next-generation sequencing technologies in diagnosis of Mendelian mitochondrial diseases and reflections on clinical spectrum. Journal of Pediatric Endocrinology and Metabolism, 2021, 34, 417-430.	0.9	8
22	Comparative analyses of two primate species diverged by more than 60 million years show different rates but similar distribution of genome-wide UV repair events. BMC Genomics, 2021, 22, 600.	2.8	5
23	CSB-independent, XPC-dependent transcription-coupled repair in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
24	Evolutionary association of receptor-wide amino acids with G protein–coupling selectivity in aminergic GPCRs. Life Science Alliance, 2022, 5, e202201439.	2.8	4
25	Genomeâ€wide Excision Repair Map of Cyclobutane Pyrimidine Dimers in <i>Arabidopsis</i> and the Roles of CSA1 and CSA2 Proteins in Transcriptionâ€coupled Repair ^{â€} . Photochemistry and Photobiology, 2022, 98, 707-712.	2.5	3
26	PHACT: Phylogeny-Aware Computing of Tolerance for Missense Mutations. Molecular Biology and Evolution, 2022, 39, .	8.9	3
27	Phylostat: A Web-based Tool to Analyze Paralogous Clade Divergence in Phylogenetic Trees. Turkish Journal of Biology, 2021, 45, 667-673.	0.8	0
28	Highâ€resolution Maps of Genomeâ€wide Human Damage and Repair. FASEB Journal, 2018, 32, 647.3.	0.5	0
29	Molecular Biology of SARS-CoV-2. Turkish Journal of Immunology, 2020, 8, 73-88.	0.1	0