Michela Pozzobon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2018593/publications.pdf

Version: 2024-02-01

87 papers

3,800 citations

33 h-index 59 g-index

88 all docs 88 docs citations

88 times ranked 5567 citing authors

#	Article	IF	CITATIONS
1	Decellularized extracellular matrix-based scaffold and hypoxic priming: A promising combination to improve the phenotype of degenerate intervertebral disc cells. Life Sciences, 2022, 301, 120623.	4.3	6
2	Macromolecular crowding tuned extracellular matrix deposition in a bioprinted human rhabdomyosarcoma model. Bioprinting, 2022, 27, e00213.	5.8	1
3	Muscle functional recovery is driven by extracellular vesicles combined with muscle extracellular matrix in a volumetric muscle loss murine model. Biomaterials, 2021, 269, 120653.	11.4	15
4	Extracellular Vesicles Secreted by Mesenchymal Stromal Cells Exert Opposite Effects to Their Cells of Origin in Murine Sodium Dextran Sulfate-Induced Colitis. Frontiers in Immunology, 2021, 12, 627605.	4.8	23
5	Intratracheal administration of mesenchymal stem cell-derived extracellular vesicles reduces lung injuries in a chronic rat model of bronchopulmonary dysplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L688-L704.	2.9	29
6	Engineered EVs for Oxidative Stress Protection. Pharmaceuticals, 2021, 14, 703.	3.8	1
7	A rhabdomyosarcoma hydrogel model to unveil cell-extracellular matrix interactions. Biomaterials Science, 2021, 10, 124-137.	5.4	3
8	Next Stage Approach to Tissue Engineering Skeletal Muscle. Bioengineering, 2020, 7, 118.	3.5	9
9	Carcinoma and Sarcoma Microenvironment at a Glance: Where We Are. Frontiers in Oncology, 2020, 10, 76.	2.8	20
10	Mesenchymal stromal cells and their secreted extracellular vesicles as therapeutic tools for COVID-19 pneumonia?. Journal of Controlled Release, 2020, 325, 135-140.	9.9	28
11	Extracellular Matrix From Decellularized Wharton's Jelly Improves the Behavior of Cells From Degenerated Intervertebral Disc. Frontiers in Bioengineering and Biotechnology, 2020, 8, 262.	4.1	22
12	Rhabdomyosarcoma Cells Produce Their Own Extracellular Matrix With Minimal Involvement of Cancer-Associated Fibroblasts: A Preliminary Study. Frontiers in Oncology, 2020, 10, 600980.	2.8	8
13	Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Frontiers in Bioengineering and Biotechnology, 2020, 8, 610544.	4.1	68
14	Topical application of lyophilized and powdered human amniotic membrane promotes diabetic ulcer healing. Wound Medicine, 2019, 27, 100171.	2.7	2
15	In Utero Transplantation of Expanded Autologous Amniotic Fluid Stem Cells Results in Long-Term Hematopoietic Engraftment. Stem Cells, 2019, 37, 1176-1188.	3.2	13
16	Allogenic tissue-specific decellularized scaffolds promote long-term muscle innervation and functional recovery in a surgical diaphragmatic hernia model. Acta Biomaterialia, 2019, 89, 115-125.	8.3	24
17	Generation of a Functioning and Self-Renewing Diaphragmatic Muscle Construct. Stem Cells Translational Medicine, 2019, 8, 858-869.	3.3	27
18	Stem cells transplantation positively modulates the heart-kidney cross talk in cardiorenal syndrome type II. International Journal of Cardiology, 2019, 275, 136-144.	1.7	9

#	Article	IF	CITATIONS
19	Heterotopic Implantation of Decellularized Pulmonary Artery Homografts In A Rodent Model: Technique Description and Preliminary Report. Journal of Investigative Surgery, 2018, 31, 282-291.	1.3	2
20	Data on the stem cells paracrine effects on apoptosis and cytokine milieu in an experimental model of cardiorenal syndrome type II. Data in Brief, 2018, 21, 1430-1434.	1.0	2
21	The Amniotic Fluid Stem Cell Secretome. , 2018, , 21-37.		0
22	Decellularized Diaphragmatic Muscle Drives a Constructive Angiogenic Response In Vivo. International Journal of Molecular Sciences, 2018, 19, 1319.	4.1	24
23	Low-affinity Nerve Growth Factor Receptor (CD271) Heterogeneous Expression in Adult and Fetal Mesenchymal Stromal Cells. Scientific Reports, 2018, 8, 9321.	3.3	55
24	Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. Stem Cells Translational Medicine, 2017, 6, 1018-1028.	3.3	399
25	First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential. Stem Cells Translational Medicine, 2017, 6, 1340-1355.	3.3	104
26	Mouse Skeletal Muscle Decellularization. Methods in Molecular Biology, 2017, 1577, 87-93.	0.9	12
27	Alveolar Rhabdomyosarcoma Decellularization. Methods in Molecular Biology, 2017, 1577, 317-325.	0.9	4
28	The Production of Pluripotent Stem Cells from Mouse Amniotic Fluid Cells Using a Transposon System. Journal of Visualized Experiments, 2017, , .	0.3	2
29	Challenges and Strategies for Improving the Regenerative Effects of Mesenchymal Stromal Cell-Based Therapies. International Journal of Molecular Sciences, 2017, 18, 2087.	4.1	178
30	Diverging Concepts and Novel Perspectives in Regenerative Medicine. International Journal of Molecular Sciences, 2017, 18, 1021.	4.1	16
31	Isolation and Expansion of Muscle Precursor Cells from Human Skeletal Muscle Biopsies. Methods in Molecular Biology, 2016, 1516, 195-204.	0.9	10
32	Dry acellular oesophageal matrix prepared by supercritical carbon dioxide. Journal of Supercritical Fluids, 2016, 115, 33-41.	3.2	28
33	First steps to define murine amniotic fluid stem cell microenvironment. Scientific Reports, 2016, 6, 37080.	3.3	11
34	Improvement of diaphragmatic performance through orthotopic application of decellularized extracellular matrix patch. Biomaterials, 2016, 74, 245-255.	11.4	62
35	Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 1400-1411.	6.1	51
36	Reprogramming of mouse amniotic fluid cells using a PiggyBac transposon system. Stem Cell Research, 2015, 15, 510-513.	0.7	7

3

#	Article	IF	CITATIONS
37	Endothelial properties of third-trimester amniotic fluid stem cells cultured in hypoxia. Stem Cell Research and Therapy, 2015, 6, 209.	5.5	31
38	The use of human amniotic fluid stem cells as an adjunct to promote pulmonary development in a rabbit model for congenital diaphragmatic hernia. Prenatal Diagnosis, 2015, 35, 833-840.	2.3	29
39	Immune Regulatory Properties of CD117 ^{pos} Amniotic Fluid Stem Cells Vary According to Gestational Age. Stem Cells and Development, 2015, 24, 132-143.	2.1	46
40	Fetal Stem Cells and Skeletal Muscle Regeneration: A Therapeutic Approach. Frontiers in Aging Neuroscience, 2014, 6, 222.	3.4	6
41	Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut, 2014, 63, 300-309.	12.1	155
42	Culturing muscle fibres in hanging drop: A novel approach to solve an old problem. Biology of the Cell, 2014, 106, 72-82.	2.0	8
43	Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell and Tissue Banking, 2014, 15, 199-211.	1.1	24
44	Hematopoietic Engraftment of Amniotic Fluid Stem Cells Following in Utero Transplantation. Blood, 2014, 124, 3809-3809.	1.4	1
45	Amniotic Fluid Stem Cells for Cardiac Regeneration. , 2014, , 3-15.		0
46	Comparative Study of Immune Regulatory Properties of Stem Cells Derived from Different Tissues. Stem Cells and Development, 2013, 22, 2990-3002.	2.1	89
47	The contribution of stem cell therapy to skeletal muscle remodeling in heart failure. International Journal of Cardiology, 2013, 168, 2014-2021.	1.7	18
48	Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia. Pediatric Pulmonology, 2013, 48, 1070-1080.	2.0	50
49	Singleâ€cell <scp>PCR</scp> analysis of murine embryonic stem cells cultured on different substrates highlights heterogeneous expression of stem cell markers. Biology of the Cell, 2013, 105, 549-560.	2.0	6
50	Isolation of c-Kit+ Human Amniotic Fluid Stem Cells from Second Trimester. Methods in Molecular Biology, 2013, 1035, 191-198.	0.9	23
51	Immune Regulatory Properties Are a Common Feature Of Stem Cells. Blood, 2013, 122, 5419-5419.	1.4	0
52	Sources of Mesenchymal Stem Cells: Current and Future Clinical Use. Advances in Biochemical Engineering/Biotechnology, 2012, 130, 267-286.	1.1	5
53	Human Amniotic Fluid Stem Cell Preconditioning Improves Their Regenerative Potential. Stem Cells and Development, 2012, 21, 1911-1923.	2.1	112
54	Amniotic Fluid Stem Cells Restore the Muscle Cell Niche in a <i>HSAâ€Cre</i> , <i> Smn ^{F7/F7}</i> Mouse Model. Stem Cells, 2012, 30, 1675-1684.	3.2	61

#	Article	IF	CITATIONS
55	Activation of Regulatory T Cells during Inflammatory Response Is Not an Exclusive Property of Stem Cells. PLoS ONE, 2012, 7, e35512.	2.5	13
56	Hypoxia Increases Mouse Satellite Cell Clone Proliferation Maintaining both In Vitro and In Vivo Heterogeneity and Myogenic Potential. PLoS ONE, 2012, 7, e49860.	2.5	36
57	Stem-cell therapy in an experimental model of pulmonary hypertension and right heart failure: Role of paracrine and neurohormonal milieu in the remodeling process. Journal of Heart and Lung Transplantation, 2011, 30, 1281-1293.	0.6	46
58	In Vitro and In Vivo Cardiomyogenic Differentiation of Amniotic Fluid Stem Cells. Stem Cell Reviews and Reports, 2011, 7, 364-380.	5.6	82
59	Design of a stirred multiwell bioreactor for expansion of CD34 ⁺ umbilical cord blood cells in hypoxic conditions. Biotechnology Progress, 2011, 27, 1154-1162.	2.6	4
60	<i>In vivo</i> tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. FASEB Journal, 2011, 25, 2296-2304.	0.5	161
61	Human Bone Marrow-Derived CD133 ⁺ Cells Delivered to a Collagen Patch on Cryoinjured Rat Heart Promote Angiogenesis and Arteriogenesis. Cell Transplantation, 2010, 19, 1247-1260.	2.5	34
62	ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective. Pediatric Surgery International, 2010, 26, 3-10.	1.4	66
63	Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture. Biomicrofluidics, 2010, 4, .	2.4	25
64	Advances in musculoskeletal tissue engineering. Organogenesis, 2010, 6, 167-172.	1.2	94
65	Clonal Characterization of Rat Muscle Satellite Cells: Proliferation, Metabolism and Differentiation Define an Intrinsic Heterogeneity. PLoS ONE, 2010, 5, e8523.	2.5	66
66	Mesenchymal Stromal Cells Can Be Derived From Bone Marrow CD133 ⁺ Cells: Implications for Therapy. Stem Cells and Development, 2009, 18, 497-510.	2.1	33
67	The influence of heart valve leaflet matrix characteristics on the interaction between human mesenchymal stem cells and decellularized scaffolds. Biomaterials, 2009, 30, 4104-4116.	11.4	79
68	Adipogenic potential of skeletal muscle satellite cells. Clinical Lipidology, 2009, 4, 245-265.	0.4	33
69	High Transduction Efficiency of Human Amniotic Fluid Stem Cells Mediated by Adenovirus Vectors. Stem Cells and Development, 2008, 17, 953-962.	2.1	45
70	Different Cardiovascular Potential of Adult- and Fetal-Type Mesenchymal Stem Cells in a Rat Model of Heart Cryoinjury. Cell Transplantation, 2008, 17, 679-694.	2.5	63
71	Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. Journal of Molecular and Cellular Cardiology, 2007, 42, 746-759.	1.9	144
72	Amniotic Fluid and Bone Marrow Derived Mesenchymal Stem Cells Can be Converted to Smooth Muscle Cells in the Cryo-Injured Rat Bladder and Prevent Compensatory Hypertrophy of Surviving Smooth Muscle Cells. Journal of Urology, 2007, 177, 369-376.	0.4	193

#	Article	IF	CITATIONS
73	Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts. Biomaterials, 2007, 28, 5449-5461.	11.4	74
74	Isolation of Mesenchymal Stem Cells From Human Vermiform Appendix. Journal of Surgical Research, 2006, 135, 85-91.	1.6	28
75	Transmembrane adaptor molecules: a new category of lymphoid-cell markers. Blood, 2006, 107, 213-221.	1.4	39
76	Rosiglitazone modifies the adipogenic potential of human muscle satellite cells. Diabetologia, 2006, 49, 1962-1973.	6.3	69
77	The NFATc1 transcription factor is widely expressed in white cells and translocates from the cytoplasm to the nucleus in a subset of human lymphomas. British Journal of Haematology, 2005, 128, 333-342.	2.5	69
78	Expression pattern of intracellular leukocyte-associated proteins in primary mediastinal B cell lymphoma. Leukemia, 2005, 19, 856-861.	7.2	23
79	Intracellular signalling molecules as immunohistochemical markers of normal and neoplastic human leucocytes in routine biopsy samples. British Journal of Haematology, 2004, 124, 519-533.	2.5	23
80	Expression pattern of FCRL (FREB, FcRX) in normal and neoplastic human B cells. British Journal of Haematology, 2004, 127, 335-343.	2.5	30
81	Anchimeric assistance effect on regioselective hydrolysis of branched PEGs: a mechanistic investigation. Bioorganic and Medicinal Chemistry, 2004, 12, 5031-5037.	3.0	26
82	Expression of intracellular signaling molecules in classical and lymphocyte predominance Hodgkin disease. Blood, 2004, 103, 188-193.	1.4	59
83	Leukocyte-specific phosphoprotein-1 and PU.1: two useful markers for distinguishing T-cell-rich B-cell lymphoma from lymphocyte-predominant Hodgkin's disease. Haematologica, 2004, 89, 957-64.	3.5	26
84	PEGylation of the antimicrobial peptide nisin A: problems and perspectives. Il Farmaco, 2003, 58, 45-50.	0.9	63
85	Phenotype and genotype of interfollicular large B cells, a subpopulation of lymphocytes often with dendritic morphology. Blood, 2003, 102, 2868-2876.	1.4	89
86	An improved procedure for the synthesis of branched polyethylene glycols (PEGs) with the reporter dipeptide met-βala for protein conjugation. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 177-180.	2.2	18
87	Gene transfer in skeletal muscle by systemic injection of DODAC lipopolyplexes. Neurological Sciences, 2000, 21, S967-S969.	1.9	7