Matthias G Pauthner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2018127/publications.pdf

Version: 2024-02-01

40 papers 3,773 citations

279798 23 h-index 315739 38 g-index

48 all docs 48 docs citations

48 times ranked

4092 citing authors

#	Article	IF	CITATIONS
1	Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science, 2015, 349, 156-161.	12.6	358
2	Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17624-17629.	7.1	324
3	Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance. Cell, 2019, 177, 1153-1171.e28.	28.9	293
4	Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches. Immunity, 2017, 46, 1073-1088.e6.	14.3	286
5	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	6.4	216
6	A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic \hat{l}^2 -Hairpin Structure. Immunity, 2017, 46, 690-702.	14.3	216
7	Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nature Communications, 2017, 8, 14954.	12.8	176
8	Electron-Microscopy-Based Epitope Mapping Defines Specificities of Polyclonal Antibodies Elicited during HIV-1 BG505 Envelope Trimer Immunization. Immunity, 2018, 49, 288-300.e8.	14.3	175
9	Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers. Immunity, 2019, 50, 241-252.e6.	14.3	153
10	Direct Probing of Germinal Center Responses Reveals Immunological Features and Bottlenecks for Neutralizing Antibody Responses to HIV Env Trimer. Cell Reports, 2016, 17, 2195-2209.	6.4	150
11	Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice. Science, 2016, 353, 1557-1560.	12.6	147
12	An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nature Microbiology, 2017, 2, 16199.	13.3	144
13	Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. Nature Communications, 2017, 8, 1655.	12.8	142
14	A Prominent Site of Antibody Vulnerability on HIV Envelope Incorporates a Motif Associated with CCR5 Binding and Its Camouflaging Glycans. Immunity, 2016, 45, 31-45.	14.3	129
15	Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nature Communications, 2018, 9, 3693.	12.8	124
16	Minimally Mutated HIV-1 Broadly Neutralizing Antibodies to Guide Reductionist Vaccine Design. PLoS Pathogens, 2016, 12, e1005815.	4.7	104
17	A Meta-analysis of Passive Immunization Studies Shows that Serum-Neutralizing Antibody Titer Associates with Protection against SHIV Challenge. Cell Host and Microbe, 2019, 26, 336-346.e3.	11.0	88
18	Global site-specific analysis of glycoprotein N-glycan processing. Nature Protocols, 2018, 13, 1196-1212.	12.0	71

#	Article	IF	CITATIONS
19	CodY orchestrates the expression of virulence determinants in emetic <i>Bacillus cereus</i> by impacting key regulatory circuits. Molecular Microbiology, 2012, 85, 67-88.	2.5	70
20	Autologous Antibody Responses to an HIV Envelope Glycan Hole Are Not Easily Broadened in Rabbits. Journal of Virology, 2020, 94, .	3.4	57
21	Ebola Virus Transmission Initiated by Relapse of Systemic Ebola Virus Disease. New England Journal of Medicine, 2021, 384, 1240-1247.	27.0	57
22	The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. Cell Reports, 2019, 27, 2426-2441.e6.	6.4	35
23	Integration of genomic sequencing into the response to the Ebola virus outbreak in Nord Kivu, Democratic Republic of the Congo. Nature Medicine, 2021, 27, 710-716.	30.7	35
24	A Fc engineering approach to define functional humoral correlates of immunity against Ebola virus. Immunity, 2021, 54, 815-828.e5.	14.3	34
25	Mapping Neutralizing Antibody Epitope Specificities to an HIV Env Trimer in Immunized and in Infected Rhesus Macaques. Cell Reports, 2020, 32, 108122.	6.4	28
26	Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes. Virology, 2015, 475, 37-45.	2.4	25
27	Vaccine-induced immune responses against both Gag and Env improve control of simian immunodeficiency virus replication in rectally challenged rhesus macaques. PLoS Pathogens, 2017, 13, e1006529.	4.7	19
28	HIV envelope trimer-elicited autologous neutralizing antibodies bind a region overlapping the N332 glycan supersite. Science Advances, 2020, 6, eaba0512.	10.3	18
29	<i>Mamu-B*17</i> ⁺ Rhesus Macaques Vaccinated with <i>env</i> , <i>vif</i> , and <i>nef</i> Manifest Early Control of SIVmac239 Replication. Journal of Virology, 2018, 92, .	3.4	11
30	Antibody engineering & therapeutics, the annual meeting of the antibody society December 7–10, 2015, San Diego, CA, USA. MAbs, 2016, 8, 617-652.	5.2	7
31	Rectal Acquisition of Simian Immunodeficiency Virus (SIV) SIVmac239 Infection despite Vaccine-Induced Immune Responses against the Entire SIV Proteome. Journal of Virology, 2020, 94, .	3.4	7
32	Induction of Transient Virus Replication Facilitates Antigen-Independent Isolation of SIV-Specific Monoclonal Antibodies. Molecular Therapy - Methods and Clinical Development, 2020, 16, 225-237.	4.1	5
33	Lassa Virus Genetics. Current Topics in Microbiology and Immunology, 2020, , 1.	1.1	4
34	Harnessing Activin A Adjuvanticity to Promote Antibody Responses to BG505 HIV Envelope Trimers. Frontiers in Immunology, 2020, 11, 1213.	4.8	4
35	A Recombinant HIV Envelope Trimer Selects for Quaternary Dependent Antibodies Targeting the Trimer Apex. AIDS Research and Human Retroviruses, 2014, 30, A7-A8.	1.1	3
36	Mapping Neutralizing Antibody Epitope Specificities to an HIV Env Trimer in Immunized and in Infected Rhesus Macaques. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
37	Corrigendum to: Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes [Virology 475 (2015) 37–45]. Virology, 2015, 478, 149-152.	2.4	0
38	Broadly Neutralizing Antibodies to Highly Antigenically Variable Viruses as Templates for Vaccine Design. Current Topics in Microbiology and Immunology, 2020, 428, 31-87.	1.1	0
39	Mapping Neutralizing Antibody Epitope Specificities to an HIV Env Trimer in Immunized and in Infected Rhesus Macaques. SSRN Electronic Journal, 0, , .	0.4	0
40	A Fc-Engineering Approach to Define Functional Humoral Correlates of Immunity Against Ebola Virus. SSRN Electronic Journal, 0, , .	0.4	0