
Albert Smolenski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2017410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclic GMP-dependent Protein Kinase Signaling Pathway Inhibits RhoA-induced Ca2+ Sensitization of Contraction in Vascular Smooth Muscle. Journal of Biological Chemistry, 2000, 275, 21722-21729.	3.4	541
2	Distinct and specific functions of cGMP-dependent protein kinases. Trends in Biochemical Sciences, 1997, 22, 307-312.	7.5	366
3	Analysis and Regulation of Vasodilator-stimulated Phosphoprotein Serine 239 Phosphorylation in Vitro and in Intact Cells Using a Phosphospecific Monoclonal Antibody. Journal of Biological Chemistry, 1998, 273, 20029-20035.	3.4	297
4	Endothelial Nitric-oxide Synthase (Type III) Is Activated and Becomes Calcium Independent upon Phosphorylation by Cyclic Nucleotide-dependent Protein Kinases. Journal of Biological Chemistry, 2000, 275, 5179-5187.	3.4	256
5	Novel roles of cAMP/cGMPâ€dependent signaling in platelets. Journal of Thrombosis and Haemostasis, 2012, 10, 167-176.	3.8	237
6	Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1466-1471.	7.1	170
7	Thrombin and Collagen Induce a Feedback Inhibitory Signaling Pathway in Platelets Involving Dissociation of the Catalytic Subunit of Protein Kinase A from an NFI®B-II®B Complex. Journal of Biological Chemistry, 2010, 285, 18352-18363.	3.4	128
8	Functional analysis of cGMP-dependent protein kinases I and II as mediators of NO/cGMP effects. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 358, 134-139.	3.0	126
9	Regulation of Human Endothelial Cell Focal Adhesion Sites and Migration by cGMP-dependent Protein Kinase I. Journal of Biological Chemistry, 2000, 275, 25723-25732.	3.4	115
10	COVID-19 induces a hyperactive phenotype in circulating platelets. PLoS Biology, 2021, 19, e3001109.	5.6	108
11	cGMP Inhibition of Na+/H+ Antiporter 3 (NHE3) Requires PDZ Domain Adapter NHERF2, a Broad Specificity Protein Kinase G-anchoring Protein. Journal of Biological Chemistry, 2005, 280, 16642-16650.	3.4	89
12	cGMP Stimulation of Cystic Fibrosis Transmembrane Conductance Regulator Clâ^' Channels Co-expressed with cGMP-dependent Protein Kinase Type II but Not Type Iβ. Journal of Biological Chemistry, 1997, 272, 4195-4200.	3.4	84
13	Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets. Nitric Oxide - Biology and Chemistry, 2018, 76, 71-80.	2.7	77
14	Endogenous or overexpressed cGMP-dependent protein kinases inhibit cAMP-dependent renin release from rat isolated perfused kidney, microdissected glomeruli, and isolated juxtaglomerular cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9003-9008.	7.1	72
15	The NO/cGMP pathway inhibits Rap1 activation in human platelets via cGMP-dependent protein kinase I. Thrombosis and Haemostasis, 2005, 93, 319-325.	3.4	56
16	Regulator of G-protein signaling 18 integrates activating and inhibitory signaling in platelets. Blood, 2012, 119, 3799-3807.	1.4	54
17	Endothelium-dependent and -independent relaxation and VASP serines 157/239 phosphorylation by cyclic nucleotide-elevating vasodilators in rat aorta. Biochemical Pharmacology, 2003, 65, 397-405.	4.4	53
18	Atrial natriuretic peptide-stimulated Ca2+ reabsorption in rabbit kidney requires membrane-targeted, cGMP-dependent protein kinase type II. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6084-6089.	7.1	51

Albert Smolenski

#	Article	IF	CITATIONS
19	Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-β mediated fibrosis. Fibrogenesis and Tissue Repair, 2012, 5, 9.	3.4	48
20	Analysis of Protein Phosphorylation Using Phosâ€Tag Gels. Current Protocols in Protein Science, 2018, 93, e64.	2.8	39
21	VASP-dependent regulation of actin cytoskeleton rigidity, cell adhesion, and detachment. Histochemistry and Cell Biology, 2006, 125, 457-474.	1.7	36
22	Analysis of protein phosphorylation using Phos-tag gels. Journal of Proteomics, 2022, 259, 104558.	2.4	33
23	Cyclic Nucleotide-dependent Protein Kinases Target ARHGAP17 and ARHGEF6 Complexes in Platelets. Journal of Biological Chemistry, 2015, 290, 29974-29983.	3.4	28
24	Cyclic nucleotideâ€dependent inhibitory signaling interweaves with activating pathways to determine platelet responses. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 558-571.	2.3	27
25	Quantitative analysis of the cardiac fibroblast transcriptome—implications for NO/cGMP signaling. Genomics, 2004, 83, 577-587.	2.9	21
26	The role of von Willebrand factor in breast cancer metastasis. Translational Oncology, 2021, 14, 101033.	3.7	18
27	The Cell Cycle Checkpoint System MAST(L)-ENSA/ARPP19-PP2A is Targeted by cAMP/PKA and cGMP/PKG in Anucleate Human Platelets. Cells, 2020, 9, 472.	4.1	16
28	Cyclic Nucleotide Dependent Dephosphorylation of Regulator of G-Protein Signaling 18 in Human Platelets. PLoS ONE, 2013, 8, e80251.	2.5	16
29	The RhoA regulators Myo9b and GEFâ€H1 are targets of cyclic nucleotideâ€dependent kinases in platelets. Journal of Thrombosis and Haemostasis, 2020, 18, 3002-3012.	3.8	12
30	Lighting up kinase action in platelets. Journal of Thrombosis and Haemostasis, 2017, 15, 1484-1486.	3.8	1