
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2017211/publications.pdf Version: 2024-02-01

RDUCE K TAN

#	Article	IF	CITATIONS
1	International consensus statement on allergy and rhinology: rhinosinusitis 2021. International Forum of Allergy and Rhinology, 2021, 11, 213-739.	2.8	398
2	è;‡æ•ů'Œé¼»ç§'å¦å›½é™å±è⁻†å£°æ~Ž : 鼻窦ç,Ž. International Forum of Allergy and Rhinology, 2016, 6	, S2 2. 8	339
3	Cytokines in Chronic Rhinosinusitis. Role in Eosinophilia and Aspirin-exacerbated Respiratory Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 682-694.	5.6	224
4	Associations Between Inflammatory Endotypes and Clinical Presentations in Chronic Rhinosinusitis. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2812-2820.e3.	3.8	221
5	Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2013, 132, 593-600.e12.	2.9	210
6	Incidence and associated premorbid diagnoses of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2013, 131, 1350-1360.	2.9	189
7	Evidence for intranasal antinuclear autoantibodies in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2011, 128, 1198-1206.e1.	2.9	169
8	Heterogeneous inflammatory patterns in chronic rhinosinusitis without nasal polyps in Chicago, Illinois. Journal of Allergy and Clinical Immunology, 2017, 139, 699-703.e7.	2.9	140
9	Excessive Fibrin Deposition in Nasal Polyps Caused by Fibrinolytic Impairment through Reduction of Tissue Plasminogen Activator Expression. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 49-57.	5.6	138
10	Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2012, 130, 410-420.e5.	2.9	120
11	Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. Journal of Allergy and Clinical Immunology, 2015, 136, 737-746.e4.	2.9	114
12	Chronic rhinosinusitis with nasal polyps is characterized by B-cell inflammation and EBV-induced protein 2 expression. Journal of Allergy and Clinical Immunology, 2013, 131, 1075-1083.e7.	2.9	109
13	Group 2 innate lymphoid cells are elevated and activated in chronic rhinosinusitis with nasal polyps. Immunity, Inflammation and Disease, 2017, 5, 233-243.	2.7	105
14	Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2013, 132, 584-592.e4.	2.9	104
15	Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. Journal of Allergy and Clinical Immunology, 2017, 139, 1966-1978.e9.	2.9	103
16	Increased noneosinophilic nasal polyps in chronic rhinosinusitis in US second-generation Asians suggest genetic regulation of eosinophilia. Journal of Allergy and Clinical Immunology, 2015, 135, 576-579.	2.9	94
17	National burden of antibiotic use for adult rhinosinusitis. Journal of Allergy and Clinical Immunology, 2013, 132, 1230-1232.	2.9	92
18	Endotypes of chronic rhinosinusitis: Relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 812-826.	5.7	90

BRUCE K TAN

#	Article	IF	CITATIONS
19	Atopic profile of patients failing medical therapy for chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2011, 1, 88-94.	2.8	87
20	Perspectives on the etiology of chronic rhinosinusitis. Current Opinion in Otolaryngology and Head and Neck Surgery, 2010, 18, 21-26.	1.8	85
21	Basophils are elevated in nasal polyps of patients with chronic rhinosinusitis without aspirin sensitivity. Journal of Allergy and Clinical Immunology, 2014, 133, 1759-1763.	2.9	80
22	Increased expression of CC chemokine ligand 18 in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2012, 129, 119-127.e9.	2.9	77
23	Clinical Characteristics of Patients with Chronic Rhinosinusitis without Nasal Polyps in an AcademicÂSetting. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1010-1016.	3.8	73
24	Abilities of Oropharyngeal pH Tests and Salivary Pepsin Analysis to Discriminate Between Asymptomatic Volunteers and Subjects With Symptoms of Laryngeal Irritation. Clinical Gastroenterology and Hepatology, 2016, 14, 535-542.e2.	4.4	68
25	Proton pump inhibitors decrease eotaxin-3/CCL26 expression in patients with chronic rhinosinusitis with nasal polyps: Possible role of the nongastric H,K-ATPase. Journal of Allergy and Clinical Immunology, 2017, 139, 130-141.e11.	2.9	63
26	Mechanisms and biomarkers of inflammatory endotypes in chronic rhinosinusitis without nasal polyps. Journal of Allergy and Clinical Immunology, 2021, 147, 1306-1317.	2.9	63
27	Increased expression of the epithelial anion transporter pendrin/SLC26A4 in nasal polyps of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2015, 136, 1548-1558.e7.	2.9	51
28	Occupational and environmental risk factors for chronic rhinosinusitis: a systematic review. International Forum of Allergy and Rhinology, 2015, 5, 996-1003.	2.8	50
29	Superior turbinate eosinophilia correlates with olfactory deficit in chronic rhinosinusitis patients. Laryngoscope, 2017, 127, 2210-2218.	2.0	48
30	A pilot study of symptom profiles from a polyp vs an eosinophilicâ€based classification of chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2016, 6, 500-507.	2.8	47
31	Airway autoimmune responses in severe eosinophilic asthma following low-dose Mepolizumab therapy. Allergy, Asthma and Clinical Immunology, 2017, 13, 2.	2.0	46
32	Oropharyngeal pH Testing Does Not Predict Response to Proton Pump Inhibitor Therapy in Patients with Laryngeal Symptoms. American Journal of Gastroenterology, 2016, 111, 1517-1524.	0.4	45
33	Activation of the 15-lipoxygenase pathway in aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2021, 147, 600-612.	2.9	43
34	International consensus statement on allergy and rhinology: Olfaction. International Forum of Allergy and Rhinology, 2022, 12, 327-680.	2.8	43
35	IL-10, TGF-β, and glucocorticoid prevent the production of type 2 cytokines in human group 2 innate lymphoid cells. Journal of Allergy and Clinical Immunology, 2018, 141, 1147-1151.e8.	2.9	40
36	The Clinical Significance of Specific Antibody Deficiency (SAD) Severity in Chronic Rhinosinusitis (CRS). Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 1105-1111.	3.8	39

#	Article	IF	CITATIONS
37	Prognostic factors for polyp recurrence in chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2022, 150, 352-361.e7.	2.9	39
38	Clinical Research Needs for the Management of Chronic Rhinosinusitis with Nasal Polyps in the New Era of Biologics: A National Institute of Allergy and Infectious Diseases Workshop. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 1532-1549.e1.	3.8	38
39	Epithelial activators of type 2 inflammation: Elevation of thymic stromal lymphopoietin, but not <scp>IL</scp> â€25 or <scp>IL</scp> â€3, in chronic rhinosinusitis with nasal polyps in Chicago, Illinois. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2251-2254.	5.7	37
40	Classical complement pathway activation in the nasal tissue of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2017, 140, 89-100.e2.	2.9	36
41	Asthma onset pattern and patient outcomes in a chronic rhinosinusitis population. International Forum of Allergy and Rhinology, 2018, 8, 495-503.	2.8	36
42	Clinical Characteristics of Adults With Chronic Rhinosinusitis and Specific Antibody Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 236-242.	3.8	35
43	Osteomeatal Complex Obstruction is not Associated with Adjacent Sinus Disease in Chronic Rhinosinusitis with Polyps. American Journal of Rhinology and Allergy, 2011, 25, 401-403.	2.0	31
44	Microparticles in nasal lavage fluids in chronic rhinosinusitis: Potential biomarkers for diagnosis of aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2017, 140, 720-729.	2.9	31
45	Postoperative Prevention and Treatment of Complications After Sinus Surgery. Otolaryngologic Clinics of North America, 2010, 43, 769-779.	1.1	30
46	Regional differences in the expression of innate host defense molecules in sinonasal mucosa. Journal of Allergy and Clinical Immunology, 2013, 132, 1227-1230.e5.	2.9	29
47	Pathogenic and protective roles of B cells and antibodies in patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2018, 141, 1553-1560.	2.9	28
48	Radiologic sinus inflammation and symptoms of chronic rhinosinusitis in a populationâ€based sample. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 911-920.	5.7	28
49	Elevation of activated neutrophils in chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2022, 149, 1666-1674.	2.9	28
50	Proprotein convertases generate a highly functional heterodimeric form of thymic stromal lymphopoietin in humans. Journal of Allergy and Clinical Immunology, 2017, 139, 1559-1567.e8.	2.9	27
51	Measurement and comparison of health utility assessments in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2015, 5, 929-936.	2.8	26
52	Role of RANK-L as a potential inducer of ILC2-mediated type 2 inflammation in chronic rhinosinusitis with nasal polyps. Mucosal Immunology, 2020, 13, 86-95.	6.0	25
53	Evidence for altered levels of IgD in the nasal airway mucosa of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2017, 140, 1562-1571.e5.	2.9	24
54	Brand Name and Generic Proton Pump Inhibitor Prescriptions in the United States: Insights from the National Ambulatory Medical Care Survey (2006–2010). Gastroenterology Research and Practice, 2015, 2015, 1-7.	1.5	23

#	Article	IF	CITATIONS
55	Current Utilization of Balloon Dilation versus Endoscopic Techniques in Pediatric Sinus Surgery. Otolaryngology - Head and Neck Surgery, 2014, 151, 852-860.	1.9	22
56	Multi-omics colocalization with genome-wide association studies reveals a context-specific genetic mechanism at a childhood onset asthma risk locus. Genome Medicine, 2021, 13, 157.	8.2	21
57	Effect of symptomâ€based risk stratification on the costs of managing patients with chronic rhinosinusitis symptoms. International Forum of Allergy and Rhinology, 2013, 3, 933-940.	2.8	20
58	The quest for autoreactive antibodies in nasal polyps. Journal of Allergy and Clinical Immunology, 2016, 138, 893-895.e5.	2.9	20
59	Increased thrombin-activatable fibrinolysis inhibitor levels in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2019, 144, 1566-1574.e6.	2.9	20
60	Studies of the role of basophils in aspirin-exacerbated respiratory disease pathogenesis. Journal of Allergy and Clinical Immunology, 2021, 148, 439-449.e5.	2.9	20
61	Prevalence and characterization of chronic rhinosinusitis in patients with non‒cystic fibrosis bronchiectasis at a tertiary care center in the United States. International Forum of Allergy and Rhinology, 2019, 9, 1424-1429.	2.8	19
62	A randomized trial examining the effect of pretreatment pointâ€ofâ€care computed tomography imaging on the management of patients with chronic rhinosinusitis symptoms. International Forum of Allergy and Rhinology, 2011, 1, 229-234.	2.8	18
63	A prospective analysis evaluating tissue biopsy location and its clinical relevance in chronic rhinosinusitis with nasal polyps. International Forum of Allergy and Rhinology, 2017, 7, 1058-1064.	2.8	18
64	Are chronic cough and laryngopharyngeal reflux more common in obstructive sleep apnea patients?. Laryngoscope, 2019, 129, 1244-1249.	2.0	18
65	Utilization of a novel interactive mobile health platform to evaluate functional outcomes and pain following septoplasty and functional endoscopic sinus surgery. International Forum of Allergy and Rhinology, 2019, 9, 345-351.	2.8	17
66	Potential Involvement of the Epidermal Growth Factor Receptor Ligand Epiregulin and Matrix Metalloproteinase-1 in Pathogenesis of Chronic Rhinosinusitis. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 334-345.	2.9	16
67	Evaluating metrics of responsiveness using patientâ€reported outcome measures in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2017, 7, 128-134.	2.8	16
68	Clinical factors associated with acute exacerbations of chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2020, 145, 1598-1605.	2.9	16
69	Development and Preliminary Validation of a New Patient-Reported Outcome Measure for Chronic Rhinosinusitis (CRS-PRO). Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2341-2350.e1.	3.8	15
70	Patient knowledge and perception of computed tomography scan in the management of chronic rhinosinusitis symptoms. Laryngoscope, 2015, 125, 791-795.	2.0	14
71	How Often is Sinus Surgery Performed for Chronic Rhinosinusitis with versus without Nasal Polyps?. American Journal of Rhinology and Allergy, 2018, 32, 34-39.	2.0	14
72	National Trends in Retropharyngeal Abscess among Adult Inpatients with Peritonsillar Abscess. Otolaryngology - Head and Neck Surgery, 2015, 152, 661-666.	1.9	13

BRUCE K TAN

#	Article	IF	CITATIONS
73	Measuring the health utility of chronic eustachian tube dysfunction. Laryngoscope, 2020, 130, E39-E44.	2.0	13
74	Predicting Obstructive Sleep Apnea Status With the Reflux Symptom Index in a Sleep Study Population. Laryngoscope, 2020, 130, E952-E957.	2.0	13
75	Prevalence of Bronchiectasis in Patients with Chronic Rhinosinusitis in a Tertiary Care Center. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3188-3195.e2.	3.8	12
76	Suppressor of cytokine signaling 3 expression is diminished in sinonasal tissues from patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2014, 133, 275-277.e1.	2.9	11
77	Contemporary Pharmacotherapy for Allergic Rhinitis and Chronic Rhinosinusitis. Otolaryngologic Clinics of North America, 2017, 50, 1135-1151.	1.1	11
78	Longitudinal Evaluation of Chronic Rhinosinusitis Symptoms in a Population-Based Sample. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1327-1335.e3.	3.8	11
79	Responsiveness and Convergent Validity of a New Patient-Reported Outcome Measure for Chronic Rhinosinusitis (CRS-PRO). Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2351-2359.e2.	3.8	10
80	Responsiveness and convergent validity of the chronic rhinosinusitis patientâ€reported outcome (CRSâ€PRO) measure in CRS patients undergoing endoscopic sinus surgery. International Forum of Allergy and Rhinology, 2021, 11, 1308-1320.	2.8	10
81	CRSâ€PRO and SNOTâ€22 correlations with type 2 inflammatory mediators in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2022, 12, 1377-1386.	2.8	10
82	Tissue proteases convert CCL23 into potent monocyte chemoattractants in patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2016, 137, 1274-1277.e9.	2.9	9
83	Acquired Immunity in Chronic Rhinosinusitis. Current Allergy and Asthma Reports, 2017, 17, 49.	5.3	9
84	Targetable pathogenic mechanisms in nasal polyposis. International Forum of Allergy and Rhinology, 2021, 11, 1220-1234.	2.8	9
85	Impact of type 2 targeting biologics on acute exacerbations of chronic rhinosinusitis. Allergy and Asthma Proceedings, 2021, 42, 417-424.	2.2	9
86	Efficacy of an oral CRTH2 antagonist (AZD1981) in the treatment of chronic rhinosinusitis with nasal polyps in adults: A randomized controlled clinical trial. Clinical and Experimental Allergy, 2022, 52, 859-867.	2.9	9
87	Procalcitonin as a Biomarker in Rhinosinusitis: A Systematic Review. American Journal of Rhinology and Allergy, 2019, 33, 103-112.	2.0	8
88	Acute invasive fungal sinusitis: Epidemiology and outcomes in the United States. International Forum of Allergy and Rhinology, 2022, 12, 233-236.	2.8	7
89	TNF induces production of type 2 cytokines in human group 2 innate lymphoid cells. Journal of Allergy and Clinical Immunology, 2020, 145, 437-440.e8.	2.9	6
90	Integrin β6 microparticles in nasal lavage fluids; potential new biomarkers for basal cell activation in chronic rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3261-3264.	5.7	6

#	Article	IF	CITATIONS
91	Cost-Efficient Workup and Management of Patients with Chronic Rhinosinusitis: Challenges and Unmet Needs. Current Otorhinolaryngology Reports, 2015, 3, 94-100.	0.5	5
92	Strong and consistent associations of precedent chronic rhinosinusitis with risk of non–cystic fibrosis bronchiectasis. Journal of Allergy and Clinical Immunology, 2022, 150, 701-708.e4.	2.9	5
93	Do NERDy eosinophils accelerate nasal polyp growth?. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2291-2292.	5.7	4
94	Antiâ€phospholipid antibodies are elevated and functionally active in chronic rhinosinusitis with nasal polyps. Clinical and Experimental Allergy, 2022, 52, 954-964.	2.9	4
95	Use of intraoperative frontal sinus mometasoneâ€eluting stents decreased interleukin 5 and interleukin 13 in patients with chronic rhinosinusitis with nasal polyps. International Forum of Allergy and Rhinology, 2022, 12, 1330-1339.	2.8	4
96	Chronic rhinosinusitis: Future treatments and unmet needs. Journal of Allergy and Clinical Immunology, 2022, 150, 287-290.	2.9	4
97	A new approach to categorization of radiologic inflammation in chronic rhinosinusitis. PLoS ONE, 2020, 15, e0235432.	2.5	3
98	Persistent discharge or edema after endoscopic sinus surgery in patients with chronic rhinosinusitis is associated with a type 1 or 3 endotype. International Forum of Allergy and Rhinology, 2023, 13, 15-24.	2.8	3
99	A Novel Role for 15-Lipoxygenase Metabolites in Aspirin Exacerbated Respiratory Disease. Journal of Allergy and Clinical Immunology, 2020, 145, AB242.	2.9	2
100	Association of common filaggrin null mutations with atopy but not chronic rhinosinusitis. Annals of Allergy, Asthma and Immunology, 2015, 114, 420-421.	1.0	1
101	Potential national savings from prescribing guidelineâ€recommended antibiotics for acute rhinosinusitis. Laryngoscope, 2016, 126, 579-581.	2.0	1
102	Patient satisfaction survey experience among American otolaryngologists. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2020, 41, 102656.	1.3	1
103	Response to Song et al American Journal of Gastroenterology, 2017, 112, 812-813.	0.4	0
104	What is the Optimal Timing of Computed Tomography Imaging to Objectively Confirm Chronic Rhinosinusitis?. Laryngoscope, 2021, 131, 248-249.	2.0	0
105	Utility of Point-of-Care COVID-19 Testing in an Outpatient Otolaryngology clinic. OTO Open, 2021, 5, 2473974X2110493.	1.4	0