Michael Ryan Hunsaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2017087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Astroglial-targeted expression of the fragile X CGG repeat premutation in mice yields RAN translation, motor deficits and possible evidence for cell-to-cell propagation of FXTAS pathology. Acta Neuropathologica Communications, 2019, 7, 27.	5.2	14
2	Unfolding the cognitive map: The role of hippocampal and extra-hippocampal substrates based on a systems analysis of spatial processing. Neurobiology of Learning and Memory, 2018, 147, 90-119.	1.9	39
3	Concomitant occurrence of FXTAS and clinically defined sporadic inclusion body myositis: report of two cases. Croatian Medical Journal, 2017, 58, 310-315.	0.7	4
4	Adaptation of the Arizona Cognitive Task Battery for use with the Ts65Dn mouse model (Mus) Tj ETQq0 0 0 rgBT 189-206.	/Overlock 0.5	10 Tf 50 62 3
5	The hippocampi of children with chromosome 22q11.2 deletion syndrome have localized anterior alterations that predict severity of anxiety. Journal of Psychiatry and Neuroscience, 2016, 41, 203-213.	2.4	9
6	Applying the Attribute Model to Develop Behavioral Tasks that Phenocopy Human Clinical Phenotypes Using Mouse Disease Models: An Endophenotyping Approach. , 2016, , 337-366.		1
7	Mouse Models of the Fragile X Tremor/Ataxia Syndrome (FXTAS) and the Fragile X Premutation. , 2015, , 641-652.		0
8	A Semi-Automated Pipeline for the Segmentation of Rhesus Macaque Hippocampus: Validation across a Wide Age Range. PLoS ONE, 2014, 9, e89456.	2.5	8
9	Unpacking Memory Processes. , 2014, , 95-111.		0
10	Postnatal development of the hippocampus in the Rhesus macaque (<i>Macaca mulatta</i>): A longitudinal magnetic resonance imaging study. Hippocampus, 2014, 24, 794-807.	1.9	26
11	Reduced activity-dependent protein levels in a mouse model of the fragile X premutation. Neurobiology of Learning and Memory, 2014, 109, 160-168.	1.9	7
12	Intranuclear inclusions in a fragile X mosaic male. Translational Neurodegeneration, 2013, 2, 10.	8.0	37
13	The medial and lateral entorhinal cortex both contribute to contextual and item recognition memory: A test of the binding ofitems and context model. Hippocampus, 2013, 23, 380-391.	1.9	72
14	The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory. Neuroscience and Biobehavioral Reviews, 2013, 37, 36-58.	6.1	218
15	Evaluation of Metric, Topological, and Temporal Ordering Memory Tasks after Lateral Fluid Percussion Injury. Journal of Neurotrauma, 2013, 30, 292-300.	3.4	18
16	Neurocognitive endophenotypes in CGG KI and Fmr1 KO mouse models of Fragile X-Associated disorders: an analysis of the state of the field. F1000Research, 2013, 2, 287.	1.6	8
17	The importance of considering all attributes of memory in behavioral endophenotyping of mouse models of genetic disease Behavioral Neuroscience, 2012, 126, 371-380.	1.2	11
18	Female CGG knock-in mice modeling the fragile X premutation are impaired on a skilled forelimb reaching task. Neurobiology of Learning and Memory, 2012, 97, 229-234.	1.9	30

MICHAEL RYAN HUNSAKER

#	Article	IF	CITATIONS
19	Comprehensive neurocognitive endophenotyping strategies for mouse models of genetic disorders. Progress in Neurobiology, 2012, 96, 220-241.	5.7	24
20	Spatiotemporal processing deficits in female CGG KI mice modeling the fragile X premutation. Behavioural Brain Research, 2012, 233, 29-34.	2.2	16
21	Distribution and frequency of intranuclear inclusions in female CGG KI mice modeling the fragile X premutation. Brain Research, 2012, 1472, 124-137.	2.2	13
22	CGG trinucleotide repeat length modulates neural plasticity and spatiotemporal processing in a mouse model of the fragile X premutation. Hippocampus, 2012, 22, 2260-2275.	1.9	31
23	Abnormal dendrite and spine morphology in primary visual cortex in the CGG knockâ€in mouse model of the fragile X premutation. Epilepsia, 2012, 53, 150-160.	5.1	48
24	Mouse Models of the Fragile X Premutation and the Fragile X Associated Tremor/Ataxia Syndrome. Results and Problems in Cell Differentiation, 2012, 54, 255-269.	0.7	16
25	Motor deficits on a ladder rung task in male and female adolescent and adult CGG knock-in mice. Behavioural Brain Research, 2011, 222, 117-121.	2.2	42
26	The role of the dorsal and ventral hippocampus in olfactory working memory. Neurobiology of Learning and Memory, 2011, 96, 361-366.	1.9	47
27	Rare Intranuclear Inclusions in the Brains of 3 Older Adult Males With Fragile X Syndrome: Implications for the Spectrum of Fragile X-Associated Disorders. Journal of Neuropathology and Experimental Neurology, 2011, 70, 462-469.	1.7	33
28	Widespread non-central nervous system organ pathology in fragile X premutation carriers with fragile X-associated tremor/ataxia syndrome and CGG knock-in mice. Acta Neuropathologica, 2011, 122, 467-479.	7.7	102
29	Neuropathologic features in the hippocampus and cerebellum of three older men with fragile X syndrome. Molecular Autism, 2011, 2, 2.	4.9	68
30	Ubiquitin-positive intranuclear inclusions in neuronal and glial cells in a mouse model of the fragile X premutation. Brain Research, 2010, 1318, 155-166.	2.2	59
31	The temporal attributes of episodic memory. Behavioural Brain Research, 2010, 215, 299-309.	2.2	86
32	Temporal ordering deficits in female CGG KI mice heterozygous for the fragile X premutation. Behavioural Brain Research, 2010, 213, 263-268.	2.2	54
33	The role of the dorsal CA1 and ventral CA1 in memory for the temporal order of a sequence of odors. Neurobiology of Learning and Memory, 2010, 93, 111-116.	1.9	57
34	The Pathology of FXTAS. , 2010, , 67-76.		0
35	A behavioral analysis of the role of CA3 and CA1 subcortical efferents during classical fear conditioning Behavioral Neuroscience, 2009, 123, 624-630.	1.2	35
36	Transecting the dorsal fornix results in novelty detection but not temporal ordering deficits in rats. Behavioural Brain Research, 2009, 201, 192-197.	2.2	6

#	Article	IF	CITATIONS
37	Progressive spatial processing deficits in a mouse model of the fragile X premutation Behavioral Neuroscience, 2009, 123, 1315-1324.	1.2	71
38	A double dissociation of subcortical hippocampal efferents for encoding and consolidation/retrieval of spatial information. Hippocampus, 2008, 18, 699-709.	1.9	35
39	Evaluating the differential roles of the dorsal dentate gyrus, dorsal CA3, and dorsal CA1 during a temporal ordering for spatial locations task. Hippocampus, 2008, 18, 955-964.	1.9	111
40	The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty. Hippocampus, 2008, 18, 1064-1073.	1.9	212
41	Dissociations across the dorsal–ventral axis of CA3 and CA1 for encoding and retrieval of contextual and auditory-cued fear. Neurobiology of Learning and Memory, 2008, 89, 61-69.	1.9	140
42	The interactions and dissociations of the dorsal hippocampus subregions: How the dentate gyrus, CA3, and CA1 process spatial information Behavioral Neuroscience, 2008, 122, 16-26.	1.2	172
43	Human topological task adapted for rats: Spatial information processes of the parietal cortex. Neurobiology of Learning and Memory, 2008, 90, 389-394.	1.9	18
44	Evaluating the temporal context of episodic memory: The role of CA3 and CA1. Behavioural Brain Research, 2008, 188, 310-315.	2.2	89
45	Dissociating the roles of dorsal and ventral CA1 for the temporal processing of spatial locations, visual objects, and odors Behavioral Neuroscience, 2008, 122, 643-650.	1.2	112
46	The CA3 subregion of the hippocampus is critical for episodic memory processing by means of relational encoding in rats Behavioral Neuroscience, 2008, 122, 1217-1225.	1.2	89
47	Chapter 1.5 The attributes of episodic memory processing. Handbook of Behavioral Neuroscience, 2008, , 57-79.	0.7	1
48	Dissociations of the medial and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatial and nonspatial (visual object) information processing Behavioral Neuroscience, 2007, 121, 742-750.	1.2	111
49	Behavioral characterization of a transection of dorsal CA3 subcortical efferents: Comparison with scopolamine and physostigmine infusions into dorsal CA3. Neurobiology of Learning and Memory, 2007, 88, 127-136.	1.9	32
50	Role of dCA3 efferents via the fimbria in the acquisition of a delay nonmatch to place task. Hippocampus, 2007, 17, 494-502.	1.9	16
51	Effects of ventral and dorsal CA1 subregional lesions on trace fear conditioning. Neurobiology of Learning and Memory, 2006, 86, 72-81.	1.9	82
52	The role of CA3 and CA1 in the acquisition of an object-trace-place paired-associate task Behavioral Neuroscience, 2006, 120, 1252-1256.	1.2	46
53	Disconnection analysis of CA3 and DG in mediating encoding but not retrieval in a spatial maze learning task. Learning and Memory, 2006, 13, 458-464.	1.3	64
54	The Role of Hippocampal Subregions in Detecting Spatial Novelty Behavioral Neuroscience, 2005, 119, 145-153.	1.2	237

#	Article	IF	CITATIONS
55	Dissociating the role of the parietal cortex and dorsal hippocampus for spatial information processing Behavioral Neuroscience, 2005, 119, 1307-1315.	1.2	77
56	The Role of CA1 in the Acquisition of an Object-Trace-Odor Paired Associate Task Behavioral Neuroscience, 2005, 119, 781-786.	1.2	112