Karin E Bornfeldt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2016334/publications.pdf

Version: 2024-02-01

41344 32842 10,788 137 49 100 citations h-index g-index papers 138 138 138 13441 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Conformational flexibility of apolipoprotein A-I amino- and carboxy-termini is necessary for lipid binding but not cholesterol efflux. Journal of Lipid Research, 2022, 63, 100168.	4.2	7
2	Comparison between genetic and pharmaceutical disruption of Ldlr expression for the development of atherosclerosis. Journal of Lipid Research, 2022, 63, 100174.	4.2	2
3	Diabetes Suppresses Glucose Uptake and Glycolysis in Macrophages. Circulation Research, 2022, 130, 779-781.	4.5	13
4	Pulmonary surfactant protein B carried by HDL predicts incident CVD in patients with type 1 diabetes. Journal of Lipid Research, 2022, 63, 100196.	4.2	7
5	The Remnant Lipoprotein Hypothesis of Diabetes-Associated Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 819-830.	2.4	10
6	Association of apolipoprotein C3 with insulin resistance and coronary artery calcium in patients with type 1 diabetes. Journal of Clinical Lipidology, 2021, 15, 235-242.	1.5	13
7	Apolipoprotein C3 and apolipoprotein B colocalize in proximity to macrophages in atherosclerotic lesions inÂdiabetes. Journal of Lipid Research, 2021, 62, 100010.	4.2	6
8	JCL roundtable: Lipids and inflammation in atherosclerosis. Journal of Clinical Lipidology, 2021, 15, 3-17.	1.5	8
9	Phosphoproteomic Analysis as an Approach for Understanding Molecular Mechanisms of cAMP-Dependent Actions. Molecular Pharmacology, 2021, 99, 342-357.	2.3	5
10	Triglyceride lowering by omega-3 fatty acids: a mechanism mediated by N-acyl taurines. Journal of Clinical Investigation, $2021, 131, .$	8.2	15
11	Atherosclerosis Regression and Cholesterol Efflux in Hypertriglyceridemic Mice. Circulation Research, 2021, 128, 690-705.	4.5	18
12	ADAM17 Boosts Cholesterol Efflux and Downstream Effects of High-Density Lipoprotein on Inflammatory Pathways in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1854-1873.	2.4	4
13	Integrative Multiomics Approaches for Discovery of New Drug Targets for Cardiovascular Disease. Circulation, 2021, 143, 2471-2474.	1.6	2
14	Niacin Increases Atherogenic Proteins in High-Density Lipoprotein of Statin-Treated Subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2330-2341.	2.4	14
15	Cardiovascular disease in diabetes, beyond glucose. Cell Metabolism, 2021, 33, 1519-1545.	16.2	87
16	CREBH normalizes dyslipidemia and halts atherosclerosis in diabetes by decreasing circulating remnant lipoproteins. Journal of Clinical Investigation, 2021, 131, .	8.2	12
17	High Concentration of Medium-Sized HDL Particles and Enrichment in HDL Paraoxonase 1 Associate With Protection From Vascular Complications in People With Long-standing Type 1 Diabetes. Diabetes Care, 2020, 43, 178-186.	8.6	39
18	TNF- $\hat{l}\pm$ induces acyl-CoA synthetase 3 to promote lipid droplet formation in human endothelial cells. Journal of Lipid Research, 2020, 61, 33-44.	4.2	29

#	Article	IF	CITATIONS
19	A New Treatment Strategy for Diabetic Dyslipidemia?. Diabetes, 2020, 69, 2061-2063.	0.6	3
20	Hypertriglyceridemia and Atherosclerosis: Using Human Research to Guide Mechanistic Studies in Animal Models. Frontiers in Endocrinology, 2020, 11, 504.	3.5	26
21	Diabetes Impairs Cellular Cholesterol Efflux From ABCA1 to Small HDL Particles. Circulation Research, 2020, 127, 1198-1210.	4.5	41
22	Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease. Diabetes, 2020, 69, 508-516.	0.6	126
23	Monocytes and Macrophages as Protagonists in Vascular Complications of Diabetes. Frontiers in Cardiovascular Medicine, 2020, 7, 10.	2.4	45
24	Emerging Targets for Cardiovascular Disease Prevention in Diabetes. Trends in Molecular Medicine, 2020, 26, 744-757.	6.7	15
25	A Role of the Heme Degradation Pathway in Shaping Prostate Inflammatory Responses and Lipid Metabolism. American Journal of Pathology, 2020, 190, 830-843.	3.8	5
26	Intracellular and Intercellular Aspects of Macrophage Immunometabolism in Atherosclerosis. Circulation Research, 2020, 126, 1209-1227.	4.5	116
27	How Far We Have Come, How Far We Have Yet to Go in Atherosclerosis Research. Circulation Research, 2020, 126, 1107-1111.	4.5	9
28	Response by Fotakis et al to Letter Regarding Article, "Anti-Inflammatory Effects of HDL (High-Density) Tj E Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e33-e34.	ГQq0 0 0 rg 2.4	BT /Overlock 2
29	Hematopoietic Cell–Expressed Endothelial Nitric Oxide Protects the Liver From Insulin Resistance. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 670-681.	2.4	4
30	Growing evidence for a role for acyl-CoA synthetase 1 in immunometabolism. Journal of Leukocyte Biology, 2019, 106, 787-790.	3.3	4
31	Highlighting Residual Atherosclerotic Cardiovascular Disease Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e1-e9.	2.4	45
32	Anti-Inflammatory Effects of HDL (High-Density Lipoprotein) in Macrophages Predominate Over Proinflammatory Effects in Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e253-e272.	2.4	86
33	Albuminuria, the High-Density Lipoprotein Proteome, and Coronary Artery Calcification in Type 1 Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1483-1491.	2.4	20
34	Apolipoprotein A1 Forms 5/5 and 5/4 Antiparallel Dimers in Human High-density Lipoprotein. Molecular and Cellular Proteomics, 2019, 18, 854a-864.	3.8	17
35	Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes. Journal of Clinical Investigation, 2019, 129, 4165-4179.	8.2	76

#	Article	IF	Citations
37	A Novel Strategy to Prevent Advanced Atherosclerosis and Lower Blood Glucose in a Mouse Model of Metabolic Syndrome. Diabetes, 2018, 67, 946-959.	0.6	25
38	Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics. Scientific Reports, 2018, 8, 5416.	3.3	30
39	High-Density Lipoprotein Function in Cardiovascular Disease and Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e10-e16.	2.4	39
40	Novel Reversible Model of Atherosclerosis and Regression Using Oligonucleotide Regulation of the LDL Receptor. Circulation Research, 2018, 122, 560-567.	4.5	50
41	A Novel Type 2 Diabetes Mouse Model of Combined Diabetic Kidney Disease and Atherosclerosis. American Journal of Pathology, 2018, 188, 343-352.	3.8	14
42	Neutrophil and Macrophage Cell Surface Colony-Stimulating Factor 1 Shed by ADAM17 Drives Mouse Macrophage Proliferation in Acute and Chronic Inflammation. Molecular and Cellular Biology, 2018, 38, .	2.3	24
43	Cardiomyocyte-specific disruption of Cathepsin K protects against doxorubicin-induced cardiotoxicity. Cell Death and Disease, 2018, 9, 692.	6.3	31
44	Smooth muscle glucose metabolism promotes monocyte recruitment and atherosclerosis in a mouse model of metabolic syndrome. JCI Insight, 2018, 3, .	5.0	21
45	Inflammatory stimuli induce acyl-CoA thioesterase 7 and remodeling of phospholipids containing unsaturated long (≥C20)-acyl chains in macrophages. Journal of Lipid Research, 2017, 58, 1174-1185.	4.2	21
46	Liver Kinase B1 Links Macrophage Metabolism Sensing and Atherosclerosis. Circulation Research, 2017, 121, 1024-1026.	4.5	3
47	A Long Road Ahead for Discovering NewÂHDL Metrics That Reflect Cardiovascular Disease Risk â^—. Journal of the American College of Cardiology, 2017, 70, 179-181.	2.8	3
48	Modulating the Gut Microbiota Improves Glucose Tolerance, Lipoprotein Profile and Atherosclerotic Plaque Development in ApoE-Deficient Mice. PLoS ONE, 2016, 11, e0146439.	2.5	44
49	Does Elevated Glucose Promote Atherosclerosis? Pros and Cons. Circulation Research, 2016, 119, 190-193.	4.5	26
50	SCAP/SREBP pathway is required for the full steroidogenic response to cyclic AMP. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5685-93.	7.1	37
51	Impact of Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1049-1053.	2.4	36
52	Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circulation Research, 2016, 118, 653-667.	4.5	760
53	Atherosclerosis. Circulation Research, 2016, 118, 531-534.	4.5	245
54	Genetic association of long-chain acyl-CoA synthetase 1 variants with fasting glucose, diabetes, and subclinical atherosclerosis. Journal of Lipid Research, 2016, 57, 433-442.	4.2	24

#	Article	lF	CITATIONS
55	Myeloid Cell Prostaglandin E2 Receptor EP4 Modulates Cytokine Production but Not Atherogenesis in a Mouse Model of Type 1 Diabetes. PLoS ONE, 2016, 11, e0158316.	2.5	17
56	Granulocyte/Macrophage Colony-stimulating Factor-dependent Dendritic Cells Restrain Lean Adipose Tissue Expansion. Journal of Biological Chemistry, 2015, 290, 14656-14667.	3.4	30
57	GPIHBP1. Circulation Research, 2015, 116, 560-562.	4.5	7
58	Uncomplicating the Macrovascular Complications of Diabetes: The 2014 Edwin Bierman Award Lecture: Figure 1. Diabetes, 2015, 64, 2689-2697.	0.6	17
59	Metabolic Flexibility and Dysfunction in Cardiovascular Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, e37-42.	2.4	35
60	Effects of High Fat Feeding and Diabetes on Regression of Atherosclerosis Induced by Low-Density Lipoprotein Receptor Gene Therapy in LDL Receptor-Deficient Mice. PLoS ONE, 2015, 10, e0128996.	2.5	30
61	The p75 Neurotrophin Receptor Is Required for the Major Loss of Sympathetic Nerves From Islets Under Autoimmune Attack. Diabetes, 2014, 63, 2369-2379.	0.6	19
62	Macrophage Metalloelastase (MMP12) Regulates Adipose Tissue Expansion, Insulin Sensitivity, and Expression of Inducible Nitric Oxide Synthase. Endocrinology, 2014, 155, 3409-3420.	2.8	51
63	Arterial Smooth Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2175-2179.	2.4	16
64	Adipose Tissue Macrophages Promote Myelopoiesis and Monocytosis in Obesity. Cell Metabolism, 2014, 19, 821-835.	16.2	395
65	2013 Russell Ross Memorial Lecture in Vascular Biology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 705-714.	2.4	34
66	Testing the Role of Myeloid Cell Glucose Flux in Inflammation and Atherosclerosis. Cell Reports, 2014, 7, 356-365.	6.4	69
67	Lipids and the Endothelium: Bidirectional Interactions. Current Atherosclerosis Reports, 2013, 15, 365.	4.8	37
68	Inflammation and diabetes-accelerated atherosclerosis: myeloid cell mediators. Trends in Endocrinology and Metabolism, 2013, 24, 137-144.	7.1	50
69	Endothelial Acyl-CoA Synthetase 1 Is Not Required for Inflammatory and Apoptotic Effects of a Saturated Fatty Acid-Rich Environment. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 232-240.	2.4	31
70	Evidence Stacks Up That Endothelial Insulin Resistance Is a Culprit in Atherosclerosis. Circulation Research, 2013, 113, 352-354.	4.5	12
71	Acyl-CoA Synthetase 1 Is Induced by Gram-negative Bacteria and Lipopolysaccharide and Is Required for Phospholipid Turnover in Stimulated Macrophages. Journal of Biological Chemistry, 2013, 288, 9957-9970.	3.4	57
72	VASP Increases Hepatic Fatty Acid Oxidation by Activating AMPK in Mice. Diabetes, 2013, 62, 1913-1922.	0.6	27

#	Article	IF	Citations
73	Coordinate Regulation of Lipid Metabolism by Novel Nuclear Receptor Partnerships. PLoS Genetics, 2012, 8, e1002645.	3.5	86
74	Diabetic vascular disease and the potential role of macrophage glucose metabolism. Annals of Medicine, 2012, 44, 555-563.	3.8	16
75	Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E715-24.	7.1	240
76	Microvascular Management of Systemic Insulin Sensitivity. Circulation Research, 2012, 111, 951-953.	4.5	2
77	Novel insights into the role of <scp>S</scp> 100 <scp>A</scp> 8/ <scp>9 in skin biology. Experimental Dermatology, 2012, 21, 822-826.</scp>	2.9	98
78	S100A8 and S100A9 in Cardiovascular Biology and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 223-229.	2.4	174
79	Acyl-CoA synthetase 1 is required for oleate and linoleate mediated inhibition of cholesterol efflux through ATP-binding cassette transporter A1 in macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 358-364.	2.4	37
80	Unique Proteomic Signatures Distinguish Macrophages and Dendritic Cells. PLoS ONE, 2012, 7, e33297.	2.5	91
81	Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metabolism, 2011, 14, 575-585.	16.2	619
82	Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells. Journal of Lipid Research, 2011, 52, 782-793.	4.2	114
83	S100A9 Differentially Modifies Phenotypic States of Neutrophils, Macrophages, and Dendritic Cells. Circulation, 2011, 123, 1216-1226.	1.6	147
84	An Inducible and Reversible Mouse Genetic Rescue System., 2011,, 253-275.		2
85	Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. Journal of Lipid Research, 2010, 51, 1719-1728.	4.2	74
86	Integrin $\hat{l}\pm$ ₇ \hat{l}^2 ₁ COMPels Smooth Muscle Cells to Maintain Their Quiescence. Circulation Research, 2010, 106, 427-429.	4.5	5
87	Platelet-derived Growth Factor Differentially Regulates the Expression and Post-translational Modification of Versican by Arterial Smooth Muscle Cells through Distinct Protein Kinase C and Extracellular Signal-regulated Kinase Pathways. Journal of Biological Chemistry, 2010, 285, 6987-6995.	3.4	26
88	Defective Phagocytosis of Apoptotic Cells by Macrophages in Atherosclerotic Lesions of ob/ob Mice and Reversal by a Fish Oil Diet. Circulation Research, 2009, 105, 1072-1082.	4.5	128
89	Lipids versus glucose in inflammation and the pathogenesis of macrovascular disease in diabetes. Current Diabetes Reports, 2009, 9, 18-25.	4.2	31
90	Diabetes and atherosclerosis: is there a role for hyperglycemia?. Journal of Lipid Research, 2009, 50, S335-S339.	4.2	191

#	Article	IF	CITATIONS
91	Type 1 diabetes promotes disruption of advanced atherosclerotic lesions in LDL receptor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2082-2087.	7.1	76
92	An Inducible and Reversible Mouse Genetic Rescue System. PLoS Genetics, 2008, 4, e1000069.	3.5	82
93	Diabetes-Accelerated Atherosclerosis and Inflammation. Circulation Research, 2008, 103, e116-7.	4.5	31
94	Do Glucose and Lipids Exert Independent Effects on Atherosclerotic Lesion Initiation or Progression to Advanced Plaques?. Circulation Research, 2007, 100, 769-781.	4.5	105
95	Rosiglitazone Inhibits Acyl-CoA Synthetase Activity and Fatty Acid Partitioning to Diacylglycerol and Triacylglycerol via a Peroxisome Proliferator-Activated Receptor-Â-Independent Mechanism in Human Arterial Smooth Muscle Cells and Macrophages. Diabetes, 2007, 56, 1143-1152.	0.6	77
96	Mouse Models for Studies of Cardiovascular Complications of Type 1 Diabetes. Annals of the New York Academy of Sciences, 2007, 1103, 202-217.	3.8	30
97	Aggressive Very Low-Density Lipoprotein (VLDL) and LDL Lowering by Gene Transfer of the VLDL Receptor Combined with a Low-Fat Diet Regimen Induces Regression and Reduces Macrophage Content in Advanced Atherosclerotic Lesions in LDL Receptor-Deficient Mice. American Journal of Pathology, 2006. 168. 2064-2073.	3.8	42
98	Nuclear Signaling in Smooth Muscle Cells. Circulation Research, 2006, 98, 720-722.	4.5	5
99	A Single Second Messenger. Circulation Research, 2006, 99, 790-792.	4.5	15
100	IGF-I/insulin hybrid receptors in human endothelial cells. Molecular and Cellular Endocrinology, 2005, 229, 31-37.	3.2	53
101	Direct effects of long-chain non-esterified fatty acids on vascular cells and their relevance to macrovascular complications of diabetes. Frontiers in Bioscience - Landmark, 2004, 9, 1240.	3.0	34
102	Hyperlipidemia in Concert With Hyperglycemia Stimulates the Proliferation of Macrophages in Atherosclerotic Lesions: Potential Role of Glucose-Oxidized LDL. Diabetes, 2004, 53, 3217-3225.	0.6	106
103	Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. Journal of Lipid Research, 2004, 45, 1958-1961.	4.2	142
104	Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. Journal of Clinical Investigation, 2004, 114, 659-668.	8.2	119
105	Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. Journal of Clinical Investigation, 2004, 114, 659-668.	8.2	171
106	Cyclic GMP Phosphodiesterases and Regulation of Smooth Muscle Function. Circulation Research, 2003, 93, 280-291.	4.5	464
107	The Cyclin-Dependent Kinase Pathway Moves Forward. Circulation Research, 2003, 92, 345-347.	4.5	7
108	Role of Protein Kinase C on the Expression of Platelet-Derived Growth Factor and Endothelin-1 in the Retina of Diabetic Rats and Cultured Retinal Capillary Pericytes. Diabetes, 2003, 52, 838-845.	0.6	115

#	Article	IF	Citations
109	How does diabetes accelerate atherosclerotic plaque rupture and arterial occlusion. Frontiers in Bioscience - Landmark, 2003, 8, s1371-1383.	3.0	10
110	Cyclic Nucleotide Phosphodiesterase 1C Promotes Human Arterial Smooth Muscle Cell Proliferation. Circulation Research, 2002, 90, 151-157.	4.5	113
111	Oleate and Linoleate Enhance the Growth-promoting Effects of Insulin-like Growth Factor-I through a Phospholipase D-dependent Pathway in Arterial Smooth Muscle Cells. Journal of Biological Chemistry, 2002, 277, 36338-36344.	3.4	36
112	Cyclic AMP-Specific Phosphodiesterase 4 Inhibitors Promote ABCA1 Expression and Cholesterol Efflux. Biochemical and Biophysical Research Communications, 2002, 290, 663-669.	2.1	47
113	Molecular pathways of cyclic nucleotide-induced inhibition of arterial smooth muscle cell proliferation. Journal of Cellular Physiology, 2001, 186, 1-10.	4.1	81
114	Diabetes Accelerates Smooth Muscle Accumulation in Lesions of Atherosclerosis: Lack of Direct Growth-Promoting Effects of High Glucose Levels. Diabetes, 2001, 50, 851-860.	0.6	185
115	Adenylyl Cyclase 3 Mediates Prostaglandin E2-induced Growth Inhibition in Arterial Smooth Muscle Cells. Journal of Biological Chemistry, 2001, 276, 34206-34212.	3.4	37
116	Leptin Induces Insulin-like Signaling That Antagonizes cAMP Elevation by Glucagon in Hepatocytes. Journal of Biological Chemistry, 2000, 275, 11348-11354.	3.4	214
117	Stressing Rac, Ras, and Downstream Heat Shock Protein 70. Circulation Research, 2000, 86, 1101-1103.	4.5	20
118	Sparing effect of leptin on liver glycogen stores in rats during the fed-to-fasted transition. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E544-E550.	3.5	12
119	Cyclic Nucleotide Phosphodiesterases and Human Arterial Smooth Muscle Cell Proliferation. Thrombosis and Haemostasis, 1999, 82, 424-434.	3.4	34
120	Crosstalk Between Protein Kinase A and Growth Factor Receptor Signaling Pathways in Arterial Smooth Muscle. Cellular Signalling, 1999, 11, 465-477.	3.6	119
121	Identification, Quantitation, and Cellular Localization of PDE1 Calmodulin-Stimulated Cyclic Nucleotide Phosphodiesterases. Methods, 1998, 14, 3-19.	3.8	50
122	Leptin inhibits insulin secretion by activation of phosphodiesterase 3B Journal of Clinical Investigation, 1998, 102, 869-873.	8.2	213
123	5 Historical perspectives and new insights involving the MAP kinase cascades. Advances in Second Messenger and Phosphoprotein Research, 1997, 31, 49-62.	4.5	17
124	The mitogen-activated protein kinase pathway can mediate growth inhibition and proliferation in smooth muscle cells. Dependence on the availability of downstream targets Journal of Clinical Investigation, 1997, 100, 875-885.	8.2	143
125	Fibrillar Collagen Inhibits Arterial Smooth Muscle Proliferation through Regulation of Cdk2 Inhibitors. Cell, 1996, 87, 1069-1078.	28.9	502
126	Intracellular Signaling in Arterial Smooth Muscle Migration versus Proliferation. Trends in Cardiovascular Medicine, 1996, 6, 143-151.	4.9	26

#	Article	IF	CITATIONS
127	Platelet-derived Growth Factor Stimulates Protein Kinase A through a Mitogen-activated Protein Kinase-dependent Pathway in Human Arterial Smooth Muscle Cells. Journal of Biological Chemistry, 1996, 271, 505-511.	3.4	90
128	cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7222-7226.	7.1	217
129	Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction Journal of Cell Biology, 1995, 130, 193-206.	5.2	277
130	The insulin-like growth factor system in vascular smooth muscle: Interaction with insulin and growth factors. Metabolism: Clinical and Experimental, 1995, 44, 58-66.	3.4	63
131	Plateletâ€derived Growth Factor. Annals of the New York Academy of Sciences, 1995, 766, 416-430.	3.8	187
132	Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation Journal of Clinical Investigation, 1994, 93, 1266-1274.	8.2	373
133	Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10300-10304.	7.1	460
134	Regulation of insulin-like growth factor-I and growth hormone receptor gene expression by diabetes and nutritional state in rat tissues. Journal of Endocrinology, 1989, 122, 651-656.	2.6	176
135	Receptors for insulin-like growth factor-l in plasma membranes isolated from bovine mesenteric arteries. European Journal of Endocrinology, 1988, 117, 428-434.	3.7	15
136	Studies on the Effect of Different Inhibitors of Arachidonic Acid Metabolism on Glyceryltrinitrateâ€induced Relaxation and cGMP Elevation in Bovine Vascular Tissue. Basic and Clinical Pharmacology and Toxicology, 1987, 60, 110-116.	0.0	12
137	Biological effects of organic nitroesters and their mechanism of action. Acta Pharmacologica Et Toxicologica, 1986, 59, 17-25.	0.0	1