
Karin E Bornfeldt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2016334/publications.pdf Version: 2024-02-01

KADIN F RODNEFIDT

#	Article	IF	CITATIONS
1	Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circulation Research, 2016, 118, 653-667.	4.5	760
2	Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metabolism, 2011, 14, 575-585.	16.2	619
3	Fibrillar Collagen Inhibits Arterial Smooth Muscle Proliferation through Regulation of Cdk2 Inhibitors. Cell, 1996, 87, 1069-1078.	28.9	502
4	Cyclic GMP Phosphodiesterases and Regulation of Smooth Muscle Function. Circulation Research, 2003, 93, 280-291.	4.5	464
5	Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10300-10304.	7.1	460
6	Adipose Tissue Macrophages Promote Myelopoiesis and Monocytosis in Obesity. Cell Metabolism, 2014, 19, 821-835.	16.2	395
7	Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation Journal of Clinical Investigation, 1994, 93, 1266-1274.	8.2	373
8	Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction Journal of Cell Biology, 1995, 130, 193-206.	5.2	277
9	Atherosclerosis. Circulation Research, 2016, 118, 531-534.	4.5	245
10	Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E715-24.	7.1	240
11	cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7222-7226.	7.1	217
12	Leptin Induces Insulin-like Signaling That Antagonizes cAMP Elevation by Glucagon in Hepatocytes. Journal of Biological Chemistry, 2000, 275, 11348-11354.	3.4	214
13	Leptin inhibits insulin secretion by activation of phosphodiesterase 3B Journal of Clinical Investigation, 1998, 102, 869-873.	8.2	213
14	Diabetes and atherosclerosis: is there a role for hyperglycemia?. Journal of Lipid Research, 2009, 50, S335-S339.	4.2	191
15	Plateletâ€derived Growth Factor. Annals of the New York Academy of Sciences, 1995, 766, 416-430.	3.8	187
16	Diabetes Accelerates Smooth Muscle Accumulation in Lesions of Atherosclerosis: Lack of Direct Growth-Promoting Effects of High Glucose Levels. Diabetes, 2001, 50, 851-860.	0.6	185
17	Regulation of insulin-like growth factor-I and growth hormone receptor gene expression by diabetes and nutritional state in rat tissues. Journal of Endocrinology, 1989, 122, 651-656.	2.6	176
18	S100A8 and S100A9 in Cardiovascular Biology and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 223-229.	2.4	174

#	Article	IF	CITATIONS
19	Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. Journal of Clinical Investigation, 2004, 114, 659-668.	8.2	171
20	S100A9 Differentially Modifies Phenotypic States of Neutrophils, Macrophages, and Dendritic Cells. Circulation, 2011, 123, 1216-1226.	1.6	147
21	The mitogen-activated protein kinase pathway can mediate growth inhibition and proliferation in smooth muscle cells. Dependence on the availability of downstream targets Journal of Clinical Investigation, 1997, 100, 875-885.	8.2	143
22	Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. Journal of Lipid Research, 2004, 45, 1958-1961.	4.2	142
23	Defective Phagocytosis of Apoptotic Cells by Macrophages in Atherosclerotic Lesions of ob/ob Mice and Reversal by a Fish Oil Diet. Circulation Research, 2009, 105, 1072-1082.	4.5	128
24	Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease. Diabetes, 2020, 69, 508-516.	0.6	126
25	Crosstalk Between Protein Kinase A and Growth Factor Receptor Signaling Pathways in Arterial Smooth Muscle. Cellular Signalling, 1999, 11, 465-477.	3.6	119
26	Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. Journal of Clinical Investigation, 2004, 114, 659-668.	8.2	119
27	Intracellular and Intercellular Aspects of Macrophage Immunometabolism in Atherosclerosis. Circulation Research, 2020, 126, 1209-1227.	4.5	116
28	Role of Protein Kinase C on the Expression of Platelet-Derived Growth Factor and Endothelin-1 in the Retina of Diabetic Rats and Cultured Retinal Capillary Pericytes. Diabetes, 2003, 52, 838-845.	0.6	115
29	Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells. Journal of Lipid Research, 2011, 52, 782-793.	4.2	114
30	Cyclic Nucleotide Phosphodiesterase 1C Promotes Human Arterial Smooth Muscle Cell Proliferation. Circulation Research, 2002, 90, 151-157.	4.5	113
31	Hyperlipidemia in Concert With Hyperglycemia Stimulates the Proliferation of Macrophages in Atherosclerotic Lesions: Potential Role of Glucose-Oxidized LDL. Diabetes, 2004, 53, 3217-3225.	0.6	106
32	Do Glucose and Lipids Exert Independent Effects on Atherosclerotic Lesion Initiation or Progression to Advanced Plaques?. Circulation Research, 2007, 100, 769-781.	4.5	105
33	Novel insights into the role of <scp>S</scp> 100 <scp>A</scp> 8/ <scp>A</scp> 9 in skin biology. Experimental Dermatology, 2012, 21, 822-826.	2.9	98
34	Unique Proteomic Signatures Distinguish Macrophages and Dendritic Cells. PLoS ONE, 2012, 7, e33297.	2.5	91
35	Platelet-derived Growth Factor Stimulates Protein Kinase A through a Mitogen-activated Protein Kinase-dependent Pathway in Human Arterial Smooth Muscle Cells. Journal of Biological Chemistry, 1996, 271, 505-511.	3.4	90
36	Cardiovascular disease in diabetes, beyond glucose. Cell Metabolism, 2021, 33, 1519-1545.	16.2	87

#	Article	IF	CITATIONS
37	Coordinate Regulation of Lipid Metabolism by Novel Nuclear Receptor Partnerships. PLoS Genetics, 2012, 8, e1002645.	3.5	86
38	Anti-Inflammatory Effects of HDL (High-Density Lipoprotein) in Macrophages Predominate Over Proinflammatory Effects in Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e253-e272.	2.4	86
39	An Inducible and Reversible Mouse Genetic Rescue System. PLoS Genetics, 2008, 4, e1000069.	3.5	82
40	Molecular pathways of cyclic nucleotide-induced inhibition of arterial smooth muscle cell proliferation. Journal of Cellular Physiology, 2001, 186, 1-10.	4.1	81
41	Rosiglitazone Inhibits Acyl-CoA Synthetase Activity and Fatty Acid Partitioning to Diacylglycerol and Triacylglycerol via a Peroxisome Proliferator-Activated Receptor-Â-Independent Mechanism in Human Arterial Smooth Muscle Cells and Macrophages. Diabetes, 2007, 56, 1143-1152.	0.6	77
42	Type 1 diabetes promotes disruption of advanced atherosclerotic lesions in LDL receptor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2082-2087.	7.1	76
43	Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes. Journal of Clinical Investigation, 2019, 129, 4165-4179.	8.2	76
44	Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. Journal of Lipid Research, 2010, 51, 1719-1728.	4.2	74
45	Testing the Role of Myeloid Cell Glucose Flux in Inflammation and Atherosclerosis. Cell Reports, 2014, 7, 356-365.	6.4	69
46	The insulin-like growth factor system in vascular smooth muscle: Interaction with insulin and growth factors. Metabolism: Clinical and Experimental, 1995, 44, 58-66.	3.4	63
47	Acyl-CoA Synthetase 1 Is Induced by Gram-negative Bacteria and Lipopolysaccharide and Is Required for Phospholipid Turnover in Stimulated Macrophages. Journal of Biological Chemistry, 2013, 288, 9957-9970.	3.4	57
48	IGF-I/insulin hybrid receptors in human endothelial cells. Molecular and Cellular Endocrinology, 2005, 229, 31-37.	3.2	53
49	Macrophage Metalloelastase (MMP12) Regulates Adipose Tissue Expansion, Insulin Sensitivity, and Expression of Inducible Nitric Oxide Synthase. Endocrinology, 2014, 155, 3409-3420.	2.8	51
50	Identification, Quantitation, and Cellular Localization of PDE1 Calmodulin-Stimulated Cyclic Nucleotide Phosphodiesterases. Methods, 1998, 14, 3-19.	3.8	50
51	Inflammation and diabetes-accelerated atherosclerosis: myeloid cell mediators. Trends in Endocrinology and Metabolism, 2013, 24, 137-144.	7.1	50
52	Novel Reversible Model of Atherosclerosis and Regression Using Oligonucleotide Regulation of the LDL Receptor. Circulation Research, 2018, 122, 560-567.	4.5	50
53	Cyclic AMP-Specific Phosphodiesterase 4 Inhibitors Promote ABCA1 Expression and Cholesterol Efflux. Biochemical and Biophysical Research Communications, 2002, 290, 663-669.	2.1	47
54	Highlighting Residual Atherosclerotic Cardiovascular Disease Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e1-e9.	2.4	45

#	Article	IF	CITATIONS
55	Monocytes and Macrophages as Protagonists in Vascular Complications of Diabetes. Frontiers in Cardiovascular Medicine, 2020, 7, 10.	2.4	45
56	Modulating the Gut Microbiota Improves Glucose Tolerance, Lipoprotein Profile and Atherosclerotic Plaque Development in ApoE-Deficient Mice. PLoS ONE, 2016, 11, e0146439.	2.5	44
57	Aggressive Very Low-Density Lipoprotein (VLDL) and LDL Lowering by Gene Transfer of the VLDL Receptor Combined with a Low-Fat Diet Regimen Induces Regression and Reduces Macrophage Content in Advanced Atherosclerotic Lesions in LDL Receptor-Deficient Mice. American Journal of Pathology, 2006. 168. 2064-2073.	3.8	42
58	Diabetes Impairs Cellular Cholesterol Efflux From ABCA1 to Small HDL Particles. Circulation Research, 2020, 127, 1198-1210.	4.5	41
59	High-Density Lipoprotein Function in Cardiovascular Disease and Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e10-e16.	2.4	39
60	High Concentration of Medium-Sized HDL Particles and Enrichment in HDL Paraoxonase 1 Associate With Protection From Vascular Complications in People With Long-standing Type 1 Diabetes. Diabetes Care, 2020, 43, 178-186.	8.6	39
61	Adenylyl Cyclase 3 Mediates Prostaglandin E2-induced Growth Inhibition in Arterial Smooth Muscle Cells. Journal of Biological Chemistry, 2001, 276, 34206-34212.	3.4	37
62	Acyl-CoA synthetase 1 is required for oleate and linoleate mediated inhibition of cholesterol efflux through ATP-binding cassette transporter A1 in macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 358-364.	2.4	37
63	Lipids and the Endothelium: Bidirectional Interactions. Current Atherosclerosis Reports, 2013, 15, 365.	4.8	37
64	SCAP/SREBP pathway is required for the full steroidogenic response to cyclic AMP. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5685-93.	7.1	37
65	Oleate and Linoleate Enhance the Growth-promoting Effects of Insulin-like Growth Factor-I through a Phospholipase D-dependent Pathway in Arterial Smooth Muscle Cells. Journal of Biological Chemistry, 2002, 277, 36338-36344.	3.4	36
66	Impact of Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1049-1053.	2.4	36
67	Metabolic Flexibility and Dysfunction in Cardiovascular Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, e37-42.	2.4	35
68	Cyclic Nucleotide Phosphodiesterases and Human Arterial Smooth Muscle Cell Proliferation. Thrombosis and Haemostasis, 1999, 82, 424-434.	3.4	34
69	Direct effects of long-chain non-esterified fatty acids on vascular cells and their relevance to macrovascular complications of diabetes. Frontiers in Bioscience - Landmark, 2004, 9, 1240.	3.0	34
70	2013 Russell Ross Memorial Lecture in Vascular Biology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 705-714.	2.4	34
71	Diabetes-Accelerated Atherosclerosis and Inflammation. Circulation Research, 2008, 103, e116-7.	4.5	31
72	Lipids versus glucose in inflammation and the pathogenesis of macrovascular disease in diabetes. Current Diabetes Reports, 2009, 9, 18-25.	4.2	31

#	Article	IF	CITATIONS
73	Endothelial Acyl-CoA Synthetase 1 Is Not Required for Inflammatory and Apoptotic Effects of a Saturated Fatty Acid-Rich Environment. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 232-240.	2.4	31
74	Cardiomyocyte-specific disruption of Cathepsin K protects against doxorubicin-induced cardiotoxicity. Cell Death and Disease, 2018, 9, 692.	6.3	31
75	Mouse Models for Studies of Cardiovascular Complications of Type 1 Diabetes. Annals of the New York Academy of Sciences, 2007, 1103, 202-217.	3.8	30
76	Granulocyte/Macrophage Colony-stimulating Factor-dependent Dendritic Cells Restrain Lean Adipose Tissue Expansion. Journal of Biological Chemistry, 2015, 290, 14656-14667.	3.4	30
77	Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics. Scientific Reports, 2018, 8, 5416.	3.3	30
78	Effects of High Fat Feeding and Diabetes on Regression of Atherosclerosis Induced by Low-Density Lipoprotein Receptor Gene Therapy in LDL Receptor-Deficient Mice. PLoS ONE, 2015, 10, e0128996.	2.5	30
79	TNF-α induces acyl-CoA synthetase 3 to promote lipid droplet formation in human endothelial cells. Journal of Lipid Research, 2020, 61, 33-44.	4.2	29
80	VASP Increases Hepatic Fatty Acid Oxidation by Activating AMPK in Mice. Diabetes, 2013, 62, 1913-1922.	0.6	27
81	Intracellular Signaling in Arterial Smooth Muscle Migration versus Proliferation. Trends in Cardiovascular Medicine, 1996, 6, 143-151.	4.9	26
82	Platelet-derived Growth Factor Differentially Regulates the Expression and Post-translational Modification of Versican by Arterial Smooth Muscle Cells through Distinct Protein Kinase C and Extracellular Signal-regulated Kinase Pathways. Journal of Biological Chemistry, 2010, 285, 6987-6995.	3.4	26
83	Does Elevated Glucose Promote Atherosclerosis? Pros and Cons. Circulation Research, 2016, 119, 190-193.	4.5	26
84	Hypertriglyceridemia and Atherosclerosis: Using Human Research to Guide Mechanistic Studies in Animal Models. Frontiers in Endocrinology, 2020, 11, 504.	3.5	26
85	A Novel Strategy to Prevent Advanced Atherosclerosis and Lower Blood Glucose in a Mouse Model of Metabolic Syndrome. Diabetes, 2018, 67, 946-959.	0.6	25
86	Genetic association of long-chain acyl-CoA synthetase 1 variants with fasting glucose, diabetes, and subclinical atherosclerosis. Journal of Lipid Research, 2016, 57, 433-442.	4.2	24
87	Neutrophil and Macrophage Cell Surface Colony-Stimulating Factor 1 Shed by ADAM17 Drives Mouse Macrophage Proliferation in Acute and Chronic Inflammation. Molecular and Cellular Biology, 2018, 38, .	2.3	24
88	Inflammatory stimuli induce acyl-CoA thioesterase 7 and remodeling of phospholipids containing unsaturated long (≥C20)-acyl chains in macrophages. Journal of Lipid Research, 2017, 58, 1174-1185.	4.2	21
89	Smooth muscle glucose metabolism promotes monocyte recruitment and atherosclerosis in a mouse model of metabolic syndrome. JCI Insight, 2018, 3, .	5.0	21
90	Stressing Rac, Ras, and Downstream Heat Shock Protein 70. Circulation Research, 2000, 86, 1101-1103.	4.5	20

#	Article	IF	CITATIONS
91	Albuminuria, the High-Density Lipoprotein Proteome, and Coronary Artery Calcification in Type 1 Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1483-1491.	2.4	20
92	The p75 Neurotrophin Receptor Is Required for the Major Loss of Sympathetic Nerves From Islets Under Autoimmune Attack. Diabetes, 2014, 63, 2369-2379.	0.6	19
93	Atherosclerosis Regression and Cholesterol Efflux in Hypertriglyceridemic Mice. Circulation Research, 2021, 128, 690-705.	4.5	18
94	Uncomplicating the Macrovascular Complications of Diabetes: The 2014 Edwin Bierman Award Lecture: Figure 1. Diabetes, 2015, 64, 2689-2697.	0.6	17
95	Apolipoprotein A1 Forms 5/5 and 5/4 Antiparallel Dimers in Human High-density Lipoprotein. Molecular and Cellular Proteomics, 2019, 18, 854a-864.	3.8	17
96	5 Historical perspectives and new insights involving the MAP kinase cascades. Advances in Second Messenger and Phosphoprotein Research, 1997, 31, 49-62.	4.5	17
97	Myeloid Cell Prostaglandin E2 Receptor EP4 Modulates Cytokine Production but Not Atherogenesis in a Mouse Model of Type 1 Diabetes. PLoS ONE, 2016, 11, e0158316.	2.5	17
98	Diabetic vascular disease and the potential role of macrophage glucose metabolism. Annals of Medicine, 2012, 44, 555-563.	3.8	16
99	Arterial Smooth Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2175-2179.	2.4	16
100	Receptors for insulin-like growth factor-l in plasma membranes isolated from bovine mesenteric arteries. European Journal of Endocrinology, 1988, 117, 428-434.	3.7	15
101	A Single Second Messenger. Circulation Research, 2006, 99, 790-792.	4.5	15
102	Emerging Targets for Cardiovascular Disease Prevention in Diabetes. Trends in Molecular Medicine, 2020, 26, 744-757.	6.7	15
103	Triglyceride lowering by omega-3 fatty acids: a mechanism mediated by N-acyl taurines. Journal of Clinical Investigation, 2021, 131, .	8.2	15
104	A Novel Type 2 Diabetes Mouse Model of Combined Diabetic Kidney Disease and Atherosclerosis. American Journal of Pathology, 2018, 188, 343-352.	3.8	14
105	Niacin Increases Atherogenic Proteins in High-Density Lipoprotein of Statin-Treated Subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2330-2341.	2.4	14
106	Association of apolipoprotein C3 with insulin resistance and coronary artery calcium in patients with type 1 diabetes. Journal of Clinical Lipidology, 2021, 15, 235-242.	1.5	13
107	Diabetes Suppresses Glucose Uptake and Glycolysis in Macrophages. Circulation Research, 2022, 130, 779-781.	4.5	13
108	Studies on the Effect of Different Inhibitors of Arachidonic Acid Metabolism on Glyceryltrinitrateâ€induced Relaxation and cGMP Elevation in Bovine Vascular Tissue. Basic and Clinical Pharmacology and Toxicology, 1987, 60, 110-116.	0.0	12

#	Article	IF	CITATIONS
109	Sparing effect of leptin on liver glycogen stores in rats during the fed-to-fasted transition. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E544-E550.	3.5	12
110	Evidence Stacks Up That Endothelial Insulin Resistance Is a Culprit in Atherosclerosis. Circulation Research, 2013, 113, 352-354.	4.5	12
111	CREBH normalizes dyslipidemia and halts atherosclerosis in diabetes by decreasing circulating remnant lipoproteins. Journal of Clinical Investigation, 2021, 131, .	8.2	12
112	How does diabetes accelerate atherosclerotic plaque rupture and arterial occlusion. Frontiers in Bioscience - Landmark, 2003, 8, s1371-1383.	3.0	10
113	The Remnant Lipoprotein Hypothesis of Diabetes-Associated Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 819-830.	2.4	10
114	How Far We Have Come, How Far We Have Yet to Go in Atherosclerosis Research. Circulation Research, 2020, 126, 1107-1111.	4.5	9
115	JCL roundtable: Lipids and inflammation in atherosclerosis. Journal of Clinical Lipidology, 2021, 15, 3-17.	1.5	8
116	The Cyclin-Dependent Kinase Pathway Moves Forward. Circulation Research, 2003, 92, 345-347.	4.5	7
117	GPIHBP1. Circulation Research, 2015, 116, 560-562.	4.5	7
118	Conformational flexibility of apolipoprotein A-I amino- and carboxy-termini is necessary for lipid binding but not cholesterol efflux. Journal of Lipid Research, 2022, 63, 100168.	4.2	7
119	Pulmonary surfactant protein B carried by HDL predicts incident CVD in patients with type 1 diabetes. Journal of Lipid Research, 2022, 63, 100196.	4.2	7
120	Apolipoprotein C3 and apolipoprotein B colocalize in proximity to macrophages in atherosclerotic lesions inÂdiabetes. Journal of Lipid Research, 2021, 62, 100010.	4.2	6
121	Nuclear Signaling in Smooth Muscle Cells. Circulation Research, 2006, 98, 720-722.	4.5	5
122	Integrin α ₇ β ₁ COMPels Smooth Muscle Cells to Maintain Their Quiescence. Circulation Research, 2010, 106, 427-429.	4.5	5
123	A Role of the Heme Degradation Pathway in Shaping Prostate Inflammatory Responses and Lipid Metabolism. American Journal of Pathology, 2020, 190, 830-843.	3.8	5
124	Phosphoproteomic Analysis as an Approach for Understanding Molecular Mechanisms of cAMP-Dependent Actions. Molecular Pharmacology, 2021, 99, 342-357.	2.3	5
125	Growing evidence for a role for acyl-CoA synthetase 1 in immunometabolism. Journal of Leukocyte Biology, 2019, 106, 787-790.	3.3	4
126	ADAM17 Boosts Cholesterol Efflux and Downstream Effects of High-Density Lipoprotein on Inflammatory Pathways in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1854-1873.	2.4	4

#	Article	IF	CITATIONS
127	Hematopoietic Cell–Expressed Endothelial Nitric Oxide Protects the Liver From Insulin Resistance. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 670-681.	2.4	4
128	Liver Kinase B1 Links Macrophage Metabolism Sensing and Atherosclerosis. Circulation Research, 2017, 121, 1024-1026.	4.5	3
129	A Long Road Ahead for Discovering NewÂHDL Metrics That Reflect Cardiovascular Disease Risk â^—. Journal of the American College of Cardiology, 2017, 70, 179-181.	2.8	3
130	A New Treatment Strategy for Diabetic Dyslipidemia?. Diabetes, 2020, 69, 2061-2063.	0.6	3
131	Microvascular Management of Systemic Insulin Sensitivity. Circulation Research, 2012, 111, 951-953.	4.5	2
132	Integrative Multiomics Approaches for Discovery of New Drug Targets for Cardiovascular Disease. Circulation, 2021, 143, 2471-2474.	1.6	2
133	Response by Fotakis et al to Letter Regarding Article, "Anti-Inflammatory Effects of HDL (High-Density) Tj ETQ Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e33-e34.	q1 1 0.78 2.4	4314 rgBT 2
134	An Inducible and Reversible Mouse Genetic Rescue System. , 2011, , 253-275.		2
135	Comparison between genetic and pharmaceutical disruption of Ldlr expression for the development of atherosclerosis. Journal of Lipid Research, 2022, 63, 100174.	4.2	2
136	Biological effects of organic nitroesters and their mechanism of action. Acta Pharmacologica Et Toxicologica, 1986, 59, 17-25.	0.0	1
137	Small HDL diabetes and proinflammatory effects in macrophages FASEB Journal 2019 33 238 3	0.5	1