Francis E Mayle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2016028/publications.pdf

Version: 2024-02-01

159585 133252 3,703 60 30 59 citations g-index h-index papers 60 60 60 3460 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Response of Amazonian forests to midâ€Holocene drought: A modelâ€data comparison. Global Change Biology, 2022, 28, 201-226.	9.5	4
2	Evidence confirms an anthropic origin of Amazonian Dark Earths. Nature Communications, 2022, 13, .	12.8	14
3	Relating pollen representation to an evolving Amazonian landscape between the last glacial maximum and Late Holocene. Quaternary Research, 2021, 99, 63-79.	1.7	4
4	Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization. PLoS ONE, 2021, 16, e0246662.	2.5	47
5	Widespread reforestation before European influence on Amazonia. Science, 2021, 372, 484-487.	12.6	28
6	Insights into past land-use and vegetation change in the Llanos de Moxos (Bolivia) using fungal non-pollen palynomorphs. Journal of Archaeological Science, 2021, 130, 105382.	2.4	3
7	Floristic change in Brazil's southern Atlantic Forest biodiversity hotspot: From the Last Glacial Maximum to the late 21st Century. Quaternary Science Reviews, 2021, 264, 107005.	3.0	11
8	Cold and humid Atlantic Rainforest during the last glacial maximum, northern EspÃrito Santo state, southeastern Brazil. Quaternary Science Reviews, 2020, 244, 106489.	3.0	8
9	Modelling the distribution of Amazonian tree species in response to longâ€term climate change during the Midâ€Late Holocene. Journal of Biogeography, 2020, 47, 1530-1540.	3.0	10
10	Long-term impacts of mid-Holocene drier climatic conditions on Bolivian tropical dry forests. Quaternary Research, 2020, 93, 204-224.	1.7	6
11	Human Contribution to Amazonian Plant Diversity: Legacy of Pre-Columbian Land Use in Modern Plant Communities. Fascinating Life Sciences, 2020, , 495-520.	0.9	6
12	Cold spot microrefugia hold the key to survival for Brazil's Critically Endangered Araucaria tree. Global Change Biology, 2019, 25, 4339-4351.	9.5	26
13	Ecosystem turnover in palaeoecological records: The sensitivity of pollen and phytolith proxies to detecting vegetation change in southwestern Amazonia. Holocene, 2019, 29, 1720-1730.	1.7	10
14	Holocene land cover change in south-western Amazonia inferred from paleoflood archives. Global and Planetary Change, 2019, 174, 105-114.	3.5	19
15	Climate change and cultural resilience in late pre-Columbian Amazonia. Nature Ecology and Evolution, 2019, 3, 1007-1017.	7.8	46
16	A quantitative study of modern pollen–vegetation relationships in southern Brazil's Araucaria forest. Review of Palaeobotany and Palynology, 2019, 265, 27-40.	1.5	5
17	Constraining pollen-based estimates of forest cover in the Amazon: A simulation approach. Holocene, 2019, 29, 262-270.	1.7	13
18	Pollen-vegetation richness and diversity relationships in the tropics. Vegetation History and Archaeobotany, 2018, 27, 411-418.	2.1	31

#	Article	IF	Citations
19	Reassessing climate and pre-Columbian drivers of paleofire activity in the Bolivian Amazon. Quaternary International, 2018, 488, 81-94.	1.5	26
20	Impact of mid- to late Holocene precipitation changes on vegetation across lowland tropical South America: a paleo-data synthesis. Quaternary Research, 2018, 89, 134-155.	1.7	36
21	Historical ecology, human niche construction and landscape in pre-Columbian Amazonia: A case study of the geoglyph builders of Acre, Brazil. Journal of Anthropological Archaeology, 2018, 50, 128-139.	1.6	21
22	Impact of pre-Columbian "geoglyph―builders on Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1868-1873.	7.1	133
23	Reply to Piperno et al.: It is too soon to argue for localized, short-term human impacts in interfluvial Amazonia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4120-E4121.	7.1	19
24	MOIETIES AND MORTUARY MOUNDS: DUALISM AT A MOUND AND ENCLOSURE COMPLEX IN THE SOUTHERN BRAZILIAN HIGHLANDS. Latin American Antiquity, 2017, 28, 232-251.	0.6	7
25	The Impacts of the Middle Holocene High Sea-Level Stand and Climatic Changes on Mangroves of the JucuruÁ§u River, Southern Bahia – Northeastern Brazil. Radiocarbon, 2017, 59, 215-230.	1.8	23
26	Preâ€Columbian ring ditch construction and land use on a †chocolate forest island' in the Bolivian Amazon. Journal of Quaternary Science, 2016, 31, 337-347.	2.1	10
27	Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150165.	4.0	43
28	Understanding the Chronology and Occupation Dynamics of Oversized Pit Houses in the Southern Brazilian Highlands. PLoS ONE, 2016, 11, e0158127.	2.5	11
29	Effects of past climate variability on fire and vegetation in the cerr $\tilde{A}\pm$ do savanna of the Huanchaca Mesetta, NE Bolivia. Climate of the Past, 2015, 11, 835-853.	3.4	21
30	Pre-Columbian land use in the ring-ditch region of the Bolivian Amazon. Holocene, 2015, 25, 1285-1300.	1.7	42
31	Reply to Silva: Dynamic human–vegetation–climate interactions at forest ecotones during the late-Holocene in lowland South America. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3833-E3833.	7.1	1
32	Sensitivity of Bolivian seasonally-dry tropical forest to precipitation and temperature changes over glacial–interglacial timescales. Vegetation History and Archaeobotany, 2014, 23, 1-14.	2.1	16
33	Hydrology and climatology at Laguna La Gaiba, lowland Bolivia: complex responses to climatic forcings over the last 25 000 years. Journal of Quaternary Science, 2014, 29, 289-300.	2.1	22
34	Pre-Columbian raised-field agriculture and land use in the Bolivian Amazon. Holocene, 2014, 24, 231-241.	1.7	54
35	Environmental impact of geometric earthwork construction in pre-Columbian Amazonia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10497-10502.	7.1	98
36	Integrated palaeoecology and archaeology – a powerful approach for understanding pre-Columbian Amazonia. Journal of Archaeological Science, 2014, 51, 54-64.	2.4	61

#	Article	IF	CITATIONS
37	Pre-Columbian landscape impact and agriculture in the Monumental Mound region of the <i>Llanos de Moxos</i> , lowland Bolivia. Quaternary Research, 2013, 80, 207-217.	1.7	45
38	Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions. Review of Palaeobotany and Palynology, 2013, 193, 15-37.	1.5	76
39	Fire-free land use in pre-1492 Amazonian savannas. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6473-6478.	7.1	99
40	Pediastrum species as potential indicators of lake-level change in tropical South America. Journal of Paleolimnology, 2012, 47, 601-615.	1.6	40
41	A 45kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307, 177-192.	2.3	117
42	Characterisation of Bolivian savanna ecosystems by their modern pollen rain and implications for fossil pollen records. Review of Palaeobotany and Palynology, 2011, 164, 223-237.	1.5	34
43	Pollen-based differentiation of Amazonian rainforest communities and implications for lowland palaeoecology in tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295, 1-18.	2.3	45
44	Differentiation between Neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record. Review of Palaeobotany and Palynology, 2009, 153, 70-85.	1.5	142
45	Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics, 2008, 30, 887-907.	3.8	590
46	Palynological differentiation between genera of the Moraceae family and implications for Amazonian palaeoecology. Review of Palaeobotany and Palynology, 2008, 149, 187-201.	1.5	51
47	Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1829-1838.	4.0	165
48	Long-term forest–savannah dynamics in the Bolivian Amazon: implications for conservation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 291-307.	4.0	134
49	Contrasting effects of climate and CO2 on Amazonian ecosystems since the last glacial maximum. Global Change Biology, 2006, 12, 1977-1984.	9.5	33
50	Modern Pollen-Rain Characteristics of Tall Terra Firme Moist Evergreen Forest, Southern Amazonia. Quaternary Research, 2005, 64, 284-297.	1.7	62
51	Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quaternary Research, 2004, 61, 215-230.	1.7	195
52	Assessment of the Neotropical dry forest refugia hypothesis in the light of palaeoecological data and vegetation model simulations. Journal of Quaternary Science, 2004, 19, 713-720.	2.1	118
53	Introduction: Late Quaternary ecosystem dynamics and carbon cycling in the tropics. Journal of Quaternary Science, 2004, 19, 623-624.	2.1	0
54	Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 499-514.	4.0	206

#	Article	IF	CITATION
55	Late Quaternary changes in Amazonian ecosystems and their implications for global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 214, 11-25.	2.3	39
56	Stomatal evidence for a decline in atmospheric CO2 concentration during the Younger Dryas stadial: a comparison with Antarctic ice core records. Journal of Quaternary Science, 2002, 17, 21-29.	2.1	63
57	Stomatal evidence for a decline in atmospheric CO2 concentration during the Younger Dryas stadial: a comparison with Antarctic ice core records. Journal of Quaternary Science, 2002, 17, 21.	2.1	2
58	Millennial-Scale Dynamics of Southern Amazonian Rain Forests. Science, 2000, 290, 2291-2294.	12.6	439
59	The Late Devensian Lateglacial palaeoenvironmental record from Whitrig Bog, SE Scotland. 1. Lithostratigraphy, geochemistry and palaeobotany. Boreas, 1997, 26, 279-295.	2.4	26
60	The Late Devensian Lateglacial palaeoenvironmental record from Whitrig Bog, SE Scotland. 2. Chironomidae (Insecta: Diptera). Boreas, 1997, 26, 297-308.	2.4	47