Julie Magarian Blander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2015622/publications.pdf

Version: 2024-02-01

71 papers 8,586 citations

38 h-index 71 g-index

74 all docs

74 docs citations

74 times ranked

13725 citing authors

#	Article	IF	CITATIONS
1	Regulation of Phagosome Maturation by Signals from Toll-Like Receptors. Science, 2004, 304, 1014-1018.	12.6	920
2	Instruction of Distinct CD4 T Helper Cell Fates by Different Notch Ligands on Antigen-Presenting Cells. Cell, 2004, 117, 515-526.	28.9	816
3	Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature, 2006, 440, 808-812.	27.8	712
4	B cell–helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nature Immunology, 2012, 13, 170-180.	14.5	615
5	Mucus Enhances Gut Homeostasis and Oral Tolerance by Delivering Immunoregulatory Signals. Science, 2013, 342, 447-453.	12.6	508
6	Regulation of inflammation by microbiota interactions with the host. Nature Immunology, 2017, 18, 851-860.	14.5	467
7	Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature, 2011, 474, 385-389.	27.8	378
8	Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation. Nature, 2009, 458, 78-82.	27.8	311
9	Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. Journal of Experimental Medicine, 2010, 207, 1453-1464.	8.5	295
10	TLR Signals Induce Phagosomal MHC-I Delivery from the Endosomal Recycling Compartment to Allow Cross-Presentation. Cell, 2014, 158, 506-521.	28.9	270
11	On regulation of phagosome maturation and antigen presentation. Nature Immunology, 2006, 7, 1029-1035.	14.5	269
12	STING Senses Microbial Viability to Orchestrate Stress-Mediated Autophagy of the Endoplasmic Reticulum. Cell, 2017, 171, 809-823.e13.	28.9	248
13	Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nature Reviews Immunology, 2012, 12, 215-225.	22.7	229
14	Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature, 2016, 539, 565-569.	27.8	166
15	Death in the intestinal epitheliumâ€"basic biology and implications for inflammatory bowel disease. FEBS Journal, 2016, 283, 2720-2730.	4.7	141
16	Regulation of the Cell Biology of Antigen Cross-Presentation. Annual Review of Immunology, 2018, 36, 717-753.	21.8	128
17	Simultaneous Targeting of Toll- and Nod-Like Receptors Induces Effective Tumor-Specific Immune Responses. Science Translational Medicine, 2012, 4, 120ra16.	12.4	125
18	A central role for Notch in effector CD8+ T cell differentiation. Nature Immunology, 2014, 15, 1143-1151.	14.5	115

#	Article	IF	Citations
19	A long-awaited merger of the pathways mediating host defence and programmed cell death. Nature Reviews Immunology, 2014, 14, 601-618.	22.7	104
20	Prothymosin- $\hat{l}\pm$ inhibits HIV-1 via Toll-like receptor 4-mediated type I interferon induction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10178-10183.	7.1	83
21	CYLD Proteolysis Protects Macrophages from TNF-Mediated Auto-necroptosis Induced by LPS and Licensed by Type I IFN. Cell Reports, 2016, 15, 2449-2461.	6.4	83
22	Apoptosis in response to microbial infection induces autoreactive TH17 cells. Nature Immunology, 2016, 17, 1084-1092.	14.5	79
23	Macrophages Maintain Epithelium Integrity by Limiting Fungal Product Absorption. Cell, 2020, 183, 411-428.e16.	28.9	76
24	Sensing Microbial Viability through Bacterial RNA Augments T Follicular Helper Cell and Antibody Responses. Immunity, 2018, 48, 584-598.e5.	14.3	71
25	The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells. Journal of Experimental Medicine, 2016, 213, 2167-2185.	8.5	69
26	Caspase-8-Dependent Inflammatory Responses Are Controlled by Its Adaptor, FADD, and Necroptosis. Immunity, 2020, 52, 994-1006.e8.	14.3	69
27	T helper 17 cells: discovery, function, and physiological trigger. Cellular and Molecular Life Sciences, 2010, 67, 1407-1421.	5.4	66
28	Insights into phagocytosis-coupled activation of pattern recognition receptors and inflammasomes. Current Opinion in Immunology, 2014, 26, 100-110.	5.5	64
29	Increasing complexity of NLRP3 inflammasome regulation. Journal of Leukocyte Biology, 2021, 109, 561-571.	3.3	64
30	Signalling and phagocytosis in the orchestration of host defence. Cellular Microbiology, 2007, 9, 290-299.	2.1	61
31	The many ways tissue phagocytes respond to dying cells. Immunological Reviews, 2017, 277, 158-173.	6.0	60
32	Coupling Toll-like receptor signaling with phagocytosis: potentiation of antigen presentation. Trends in Immunology, 2007, 28, 19-25.	6.8	56
33	The comings and goings of <scp>MHC</scp> class I molecules herald a new dawn in crossâ€presentation. Immunological Reviews, 2016, 272, 65-79.	6.0	55
34	On cell death in the intestinal epithelium and its impact on gut homeostasis. Current Opinion in Gastroenterology, 2018, 34, 413-419.	2.3	53
35	Infection and apoptosis as a combined inflammatory trigger. Current Opinion in Immunology, 2010, 22, 55-62.	5.5	51
36	Alteration at a Single Amino Acid Residue in the T Cell Receptor α Chain Complementarity Determining Region 2 Changes the Differentiation of Naive Cd4 T Cells in Response to Antigen from T Helper Cell Type 1 (Th1) to Th2. Journal of Experimental Medicine, 2000, 191, 2065-2074.	8.5	50

#	Article	IF	Citations
37	IL-23 activates innate lymphoid cells to promote neonatal intestinal pathology. Mucosal Immunology, 2015, 8, 390-402.	6.0	50
38	An Updated View of the Intracellular Mechanisms Regulating Cross-Presentation. Frontiers in Immunology, 2013, 4, 401.	4.8	49
39	A TLR and Non-TLR Mediated Innate Response to Lentiviruses Restricts Hepatocyte Entry and Can be Ameliorated by Pharmacological Blockade. Molecular Therapy, 2012, 20, 2257-2267.	8.2	42
40	Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome. Nature Immunology, 2022, 23, 705-717.	14.5	42
41	Death-Defining Immune Responses After Apoptosis. American Journal of Transplantation, 2014, 14, 1488-1498.	4.7	41
42	Phagocytosis and antigen presentation: a partnership initiated by Toll-like receptors. Annals of the Rheumatic Diseases, 2008, 67, iii44-iii49.	0.9	39
43	Sensing Microbial RNA in the Cytosol. Frontiers in Immunology, 2013, 4, 468.	4.8	38
44	Vita-PAMPs: Signatures of Microbial Viability. Advances in Experimental Medicine and Biology, 2013, 785, 1-8.	1.6	37
45	Spotlight on TAP and its vital role in antigen presentation and cross-presentation. Molecular Immunology, 2022, 142, 105-119.	2.2	31
46	Exploiting vita-PAMPs in vaccines. Current Opinion in Pharmacology, 2018, 41, 128-136.	3.5	27
47	TAP dysfunction in dendritic cells enables noncanonical cross-presentation for T cell priming. Nature Immunology, 2021, 22, 497-509.	14.5	27
48	A Pool of Central Memory-Like CD4 T Cells Contains Effector Memory Precursors. Journal of Immunology, 2003, 170, 2940-2948.	0.8	26
49	Cell-autonomous stress responses in innate immunity. Journal of Leukocyte Biology, 2017, 101, 77-86.	3.3	26
50	Revisiting the old link between infection and autoimmune disease with commensals and T helper 17 cells. Immunologic Research, 2012, 54, 50-68.	2.9	23
51	Coâ€ordination of Incoming and Outgoing Traffic in Antigenâ€Presenting Cells by Pattern Recognition Receptors and T Cells. Traffic, 2011, 12, 1669-1676.	2.7	22
52	Nod-Like Receptors: Key Molecular Switches in the Conundrum of Cancer. Frontiers in Immunology, 2014, 5, 185.	4.8	19
53	Reply to "Toll-like receptors and phagosome maturation― Nature Immunology, 2007, 8, 217-218.	14.5	15
54	The unexpected link between infection-induced apoptosis and a T <scp>h</scp> 17 immune response. Journal of Leukocyte Biology, 2011, 89, 565-576.	3.3	13

#	Article	IF	CITATIONS
55	Detection of a vita-PAMP STINGs cells into reticulophagy. Autophagy, 2018, 14, 1-3.	9.1	13
56	Recognition of a Specific Self-Peptide: Self-MHC Class II Complex Is Critical for Positive Selection of Thymocytes Expressing the D10 TCR. Journal of Immunology, 2003, 170, 48-54.	0.8	12
57	Responding to infection and apoptosisâ \in f â \in f â task for T _H 17 cells. Annals of the New York Academy of Sciences, 2010, 1209, 56-67.	3.8	8
58	Screening of Anti-MUC1 Antibodies for Reactivity with Native (Ascites) and Recombinant (Baculovirus) MUC1 and for Blocking MUC1 Specific Cytotoxic T-Lymphocytes. Tumor Biology, 1998, 19, 147-151.	1.8	7
59	Amino Acid Addiction. Science, 2009, 324, 1282-1283.	12.6	7
60	ICOStomizing Immunotherapies with T _H 17. Science Translational Medicine, 2010, 2, 55ps52.	12.4	6
61	Measuring Innate Immune Responses to Bacterial Viability. Methods in Molecular Biology, 2018, 1714, 167-190.	0.9	6
62	A new approach for inflammatory bowel disease therapy. Nature Medicine, 2019, 25, 545-546.	30.7	6
63	A Comprehensive Experimental Guide to Studying Crossâ€Presentation in Dendritic Cells In Vitro. Current Protocols in Immunology, 2020, 131, e115.	3.6	4
64	Attacking tumor cells with a dual ligand for innate immune receptors. Oncotarget, 2012, 3, 361-362.	1.8	4
65	Innate Immune Cells Cast an Eye on DNA. Journal of Molecular Cell Biology, 2009, 1, 77-79.	3.3	3
66	Inflammasome and toll-like receptor 9: Partners in crime in toxic liver injury. Hepatology, 2009, 49, 2119-2121.	7.3	3
67	Designing a Type I Interferon Signaling Phagosome. Immunity, 2012, 37, 947-949.	14.3	3
68	MerTK Blockade Fuels Anti-tumor Immunity. Immunity, 2020, 52, 212-214.	14.3	3
69	"Flagellated" cancer cells propel anti-tumor immunity. Oncolmmunology, 2012, 1, 940-942.	4.6	2
70	Analysis of the TLR/NF-l̂ºB Pathway in Antigen-Presenting Cells in Malignancies Promoted by Inflammation. Methods in Molecular Biology, 2009, 512, 99-117.	0.9	1
71	A key ingredient for priming killer T cells. Science, 2018, 362, 641-642.	12.6	0