## Khalil Amine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2015229/publications.pdf Version: 2024-02-01



ΚΗΛΙΙΙ ΔΜΙΝΕ

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Atomistic Insights of Irreversible Li <sup>+</sup> Intercalation in MnO <sub>2</sub> Electrode.<br>Angewandte Chemie, 2022, 134, e202113420.                                                                         | 1.6  | 3         |
| 2  | Atomistic Insights of Irreversible Li <sup>+</sup> Intercalation in MnO <sub>2</sub> Electrode.<br>Angewandte Chemie - International Edition, 2022, 61, .                                                            | 7.2  | 8         |
| 3  | Multiscale Understanding of Surface Structural Effects on Highâ€Temperature Operational Resiliency<br>of Layered Oxide Cathodes. Advanced Materials, 2022, 34, e2107326.                                             | 11.1 | 21        |
| 4  | Simultaneously Blocking Chemical Crosstalk and Internal Short Circuit via Gelâ€Stretching Derived<br>Nanoporous Nonâ€Shrinkage Separator for Safe Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34,<br>e2106335. | 11.1 | 51        |
| 5  | Efficient diffusion of superdense lithium <i>via</i> atomic channels for dendrite-free lithium–metal batteries. Energy and Environmental Science, 2022, 15, 196-205.                                                 | 15.6 | 27        |
| 6  | Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries. Nano Energy, 2022,<br>92, 106720.                                                                                                 | 8.2  | 34        |
| 7  | High Nickel and No Cobalt─The Pursuit of Next-Generation Layered Oxide Cathodes. ACS Applied<br>Materials & Interfaces, 2022, 14, 23056-23065.                                                                       | 4.0  | 30        |
| 8  | Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nature<br>Communications, 2022, 13, 436.                                                                                       | 5.8  | 29        |
| 9  | Evidence of Morphological Change in Sulfur Cathodes upon Irradiation by Synchrotron X-rays. ACS<br>Energy Letters, 2022, 7, 577-582.                                                                                 | 8.8  | 7         |
| 10 | Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nature Communications, 2022, 13, 172.                                                                         | 5.8  | 83        |
| 11 | Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling<br>towards Fastâ€Charging Zn Battery Chemistry. Angewandte Chemie, 2022, 134, .                                       | 1.6  | 13        |
| 12 | Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling<br>towards Fast harging Zn Battery Chemistry. Angewandte Chemie - International Edition, 2022, 61, .                  | 7.2  | 82        |
| 13 | Transferring Liquid Metal to form a Hybrid Solid Electrolyte via a Wettability‶uning Technology for<br>Lithiumâ€Metal Anodes. Advanced Materials, 2022, 34, e2200181.                                                | 11.1 | 28        |
| 14 | Regulation of Surface Defect Chemistry toward Stable Niâ€Rich Cathodes. Advanced Materials, 2022, 34,<br>e2200744.                                                                                                   | 11.1 | 41        |
| 15 | In Situ Formation of Polycyclic Aromatic Hydrocarbons as an Artificial Hybrid Layer for Lithium Metal<br>Anodes. Nano Letters, 2022, 22, 263-270.                                                                    | 4.5  | 31        |
| 16 | Understanding the Role of Lithium Iodide in Lithium–Oxygen Batteries. Advanced Materials, 2022, 34,<br>e2106148.                                                                                                     | 11.1 | 26        |
| 17 | Impacts of Dissolved Ni <sup>2+</sup> on the Solid Electrolyte Interphase on a Graphite Anode.<br>Angewandte Chemie, 2022, 134, .                                                                                    | 1.6  | 4         |
| 18 | Impacts of Dissolved Ni <sup>2+</sup> on the Solid Electrolyte Interphase on a Graphite Anode.<br>Angewandte Chemie - International Edition, 2022, 61, .                                                             | 7.2  | 31        |

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Pushing Lithium–Sulfur Batteries towards Practical Working Conditions through a<br>Cathode–Electrolyte Synergy. Angewandte Chemie - International Edition, 2022, 61, .       | 7.2  | 14        |
| 20 | Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy. Nature Communications, 2022, 13, 2319.                          | 5.8  | 143       |
| 21 | Pushing Lithium–Sulfur Batteries towards Practical Working Conditions through a<br>Cathode–Electrolyte Synergy. Angewandte Chemie, 2022, 134, .                              | 1.6  | 2         |
| 22 | Unravelling the Nature of the Intrinsic Complex Structure of Binaryâ€Phase Na‣ayered Oxides. Advanced<br>Materials, 2022, 34, e2202137.                                      | 11.1 | 21        |
| 23 | How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits?. Nano Energy, 2022, 98, 107336.  | 8.2  | 21        |
| 24 | Innenrücktitelbild: Impacts of Dissolved Ni <sup>2+</sup> on the Solid Electrolyte Interphase on a<br>Graphite Anode (Angew. Chem. 30/2022). Angewandte Chemie, 2022, 134, . | 1.6  | 0         |
| 25 | Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nature Communications, 2022, 13, .                                 | 5.8  | 61        |
| 26 | Atomically dispersed Pt and Fe sites and Pt–Fe nanoparticles for durable proton exchange membrane<br>fuel cells. Nature Catalysis, 2022, 5, 503-512.                         | 16.1 | 155       |
| 27 | Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nature Energy,<br>2022, 7, 808-817.                                                      | 19.8 | 55        |
| 28 | Origin of structural degradation in Li-rich layered oxide cathode. Nature, 2022, 606, 305-312.                                                                               | 13.7 | 206       |
| 29 | Recent progress in fundamental understanding of selenium-doped sulfur cathodes during charging and discharging with various electrolytes. , 2022, , 235-260.                 |      | 0         |
| 30 | Mesoscale-architecture-based crack evolution dictating cycling stability of advanced lithium ion batteries. Nano Energy, 2021, 79, 105420.                                   | 8.2  | 36        |
| 31 | A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with<br>double-end binding sites. Nature Nanotechnology, 2021, 16, 166-173.     | 15.6 | 392       |
| 32 | Full Concentration Gradientâ€Tailored Liâ€Rich Layered Oxides for Highâ€Energy Lithiumâ€Ion Batteries.<br>Advanced Materials, 2021, 33, e2001358.                            | 11.1 | 65        |
| 33 | Revealing the Atomic Structures of Exposed Lateral Surfaces for Polymorphic Manganese Dioxide<br>Nanowires. Small Structures, 2021, 2, 2000091.                              | 6.9  | 18        |
| 34 | In Situ Construction of Uniform and Robust Cathode–Electrolyte Interphase for Liâ€Rich Layered<br>Oxides. Advanced Functional Materials, 2021, 31, 2009192.                  | 7.8  | 81        |
| 35 | Sustainable existence of solid mercury (Hg) nanoparticles at room temperature and their applications.<br>Chemical Science, 2021, 12, 3226-3238.                              | 3.7  | 10        |
| 36 | <i>In Situ</i> Localized Polysulfide Injector for the Activation of Bulk Lithium Sulfide. Journal of the American Chemical Society, 2021, 143, 2185-2189.                    | 6.6  | 31        |

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Atomic/molecular layer deposition for energy storage and conversion. Chemical Society Reviews, 2021, 50, 3889-3956.                                                                                                                                             | 18.7 | 109       |
| 38 | Enabling stable and high-rate cycling of a Ni-rich layered oxide cathode for lithium-ion batteries by<br>modification with an artificial Li <sup>+</sup> -conducting cathode-electrolyte interphase. Journal of<br>Materials Chemistry A, 2021, 9, 11623-11631. | 5.2  | 33        |
| 39 | Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy and Environmental Science, 2021, 14, 5289-5314.                                                                                                                      | 15.6 | 156       |
| 40 | Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries.<br>Nature Energy, 2021, 6, 277-286.                                                                                                                              | 19.8 | 255       |
| 41 | Correlating Catalyst Design and Discharged Product to Reduce Overpotential in Li O <sub>2</sub><br>Batteries. Small, 2021, 17, e2007760.                                                                                                                        | 5.2  | 22        |
| 42 | Vacancyâ€Enabled O3 Phase Stabilization for Manganeseâ€Rich Layered Sodium Cathodes. Angewandte<br>Chemie - International Edition, 2021, 60, 8258-8267.                                                                                                         | 7.2  | 59        |
| 43 | Vacancyâ€Enabled O3 Phase Stabilization for Manganeseâ€Rich Layered Sodium Cathodes. Angewandte<br>Chemie, 2021, 133, 8339-8348.                                                                                                                                | 1.6  | 14        |
| 44 | Wholeâ€Voltageâ€Range Oxygen Redox in P2‣ayered Cathode Materials for Sodiumâ€lon Batteries. Advanced Materials, 2021, 33, e2008194.                                                                                                                            | 11.1 | 108       |
| 45 | Solid-State Synthesis of Highly Dispersed Nitrogen-Coordinated Single Iron Atom Electrocatalysts for<br>Proton Exchange Membrane Fuel Cells. Nano Letters, 2021, 21, 3633-3639.                                                                                 | 4.5  | 32        |
| 46 | A universal method to fabricating porous carbon for Li-O2 battery. Nano Energy, 2021, 82, 105782.                                                                                                                                                               | 8.2  | 42        |
| 47 | Unveiling decaying mechanism through quantitative structure-activity relationship in electrolytes for lithium-ion batteries. Nano Energy, 2021, 83, 105843.                                                                                                     | 8.2  | 23        |
| 48 | LiMn2O4 spinel and substituted cathodes. Nature Energy, 2021, 6, 566-566.                                                                                                                                                                                       | 19.8 | 81        |
| 49 | Understanding the Effect of Solid Electrocatalysts on Achieving Highly Energyâ€Efficient<br>Lithium–Oxygen Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100045.                                                                            | 2.8  | 2         |
| 50 | Nanotechnology for Sulfur Cathodes. ACS Nano, 2021, 15, 8087-8094.                                                                                                                                                                                              | 7.3  | 29        |
| 51 | Complementary Electrolyte Design for Li Metal Batteries in Electric Vehicle Applications. ACS Applied<br>Materials & Interfaces, 2021, 13, 25879-25889.                                                                                                         | 4.0  | 10        |
| 52 | Mesocrystallizing Nanograins for Enhanced Li + Storage. Advanced Energy Materials, 2021, 11, 2100503.                                                                                                                                                           | 10.2 | 5         |
| 53 | Enabling Highâ€Performance NASICONâ€Based Solidâ€State Lithium Metal Batteries Towards Practical<br>Conditions. Advanced Functional Materials, 2021, 31, 2102765.                                                                                               | 7.8  | 32        |
| 54 | Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials, 2021, 37, 77-86.                                                                                                                                           | 9.5  | 78        |

4

| #  | Article                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Toward a mechanistic understanding of electrocatalytic nanocarbon. Nature Communications, 2021, 12, 3288.                                                           | 5.8  | 35        |
| 56 | Li4Ti5O12 spinel anodes. Nature Energy, 2021, 6, 683-683.                                                                                                           | 19.8 | 68        |
| 57 | In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode.<br>Nature Communications, 2021, 12, 4235.                        | 5.8  | 74        |
| 58 | Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano<br>Energy, 2021, 85, 105878.                                      | 8.2  | 116       |
| 59 | Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage<br>Materials, 2021, 39, 395-402.                                  | 9.5  | 74        |
| 60 | The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nature Reviews<br>Materials, 2021, 6, 1036-1052.                                | 23.3 | 201       |
| 61 | Electronic properties of Ir3Li and ultra-nanocrystalline lithium superoxide formation. Nano Energy, 2021, 90, 106549.                                               | 8.2  | 3         |
| 62 | Electrolytes Polymerizationâ€Induced Cathodeâ€Electrolyteâ€Interphase for High Voltage Lithiumâ€Ion<br>Batteries. Advanced Energy Materials, 2021, 11, 2101956.     | 10.2 | 39        |
| 63 | Layered Li–Ni–Mn–Co oxide cathodes. Nature Energy, 2021, 6, 933-933.                                                                                                | 19.8 | 67        |
| 64 | Wood Carbon Based Single-Atom Catalyst for Rechargeable Zn–Air Batteries. ACS Energy Letters, 2021,<br>6, 3624-3633.                                                | 8.8  | 103       |
| 65 | Laserâ€Irradiated Holey Grapheneâ€Supported Singleâ€Atom Catalyst towards Hydrogen Evolution and<br>Oxygen Reduction. Advanced Energy Materials, 2021, 11, 2101619. | 10.2 | 43        |
| 66 | A general strategy for batch development of high-performance and cost-effective sodium layered cathodes. Nano Energy, 2021, 89, 106371.                             | 8.2  | 22        |
| 67 | Tunning the linkage of structure units to enable stable spinel-based cathode in the wide potential window. Nano Energy, 2021, 89, 106457.                           | 8.2  | 5         |
| 68 | Superior long-term cycling of high-voltage lithium-ion batteries enabled by single-solvent electrolyte.<br>Nano Energy, 2021, 89, 106299.                           | 8.2  | 21        |
| 69 | In-built ultraconformal interphases enable high-safety practical lithium batteries. Energy Storage<br>Materials, 2021, 43, 248-257.                                 | 9.5  | 49        |
| 70 | (S)TEM-EELS as an advanced characterization technique for lithium-ion batteries. Materials Chemistry<br>Frontiers, 2021, 5, 5186-5193.                              | 3.2  | 20        |
| 71 | Principle in developing novel fluorinated sulfone electrolyte for high voltage lithium-ion batteries.<br>Energy and Environmental Science, 2021, 14, 3029-3034.     | 15.6 | 44        |
| 72 | Stress- and Interface-Compatible Red Phosphorus Anode for High-Energy and Durable Sodium-Ion<br>Batteries. ACS Energy Letters, 2021, 6, 547-556.                    | 8.8  | 33        |

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Prelithiated Li-Enriched Gradient Interphase toward Practical High-Energy NMC–Silicon Full Cell. ACS<br>Energy Letters, 2021, 6, 320-328.                                                                                                                          | 8.8  | 50        |
| 74 | Uncommon Behavior of Li Doping Suppresses Oxygen Redox in P2â€Type Manganeseâ€Rich Sodium Cathodes.<br>Advanced Materials, 2021, 33, e2107141.                                                                                                                     | 11.1 | 34        |
| 75 | Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy.<br>Nature Communications, 2021, 12, 6024.                                                                                                                    | 5.8  | 80        |
| 76 | Highâ€Voltage and Highâ€Safety Practical Lithium Batteries with Ethylene Carbonateâ€Free Electrolyte.<br>Advanced Energy Materials, 2021, 11, 2102299.                                                                                                             | 10.2 | 59        |
| 77 | The importance of anode protection towards lithium oxygen batteries. Journal of Materials Chemistry<br>A, 2020, 8, 3563-3573.                                                                                                                                      | 5.2  | 65        |
| 78 | Integrating Multiredox Centers into One Framework for High-Performance Organic Li-Ion Battery<br>Cathodes. ACS Energy Letters, 2020, 5, 224-231.                                                                                                                   | 8.8  | 59        |
| 79 | Boosting Superior Lithium Storage Performance of Alloyâ€Based Anode Materials via Ultraconformal<br>Sb Coating–Derived Favorable Solidâ€Electrolyte Interphase. Advanced Energy Materials, 2020, 10,<br>1903186.                                                   | 10.2 | 29        |
| 80 | <i>In Situ</i> Construction of an Ultrarobust and Lithiophilic Li-Enriched Li–N Nanoshield for<br>High-Performance Ge-Based Anode Materials. ACS Energy Letters, 2020, 5, 3490-3497.                                                                               | 8.8  | 29        |
| 81 | Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries. Angewandte Chemie -<br>International Edition, 2020, 59, 22978-22982.                                                                                                                    | 7.2  | 29        |
| 82 | Local spring effect in titanium-based layered oxides. Energy and Environmental Science, 2020, 13, 4371-4380.                                                                                                                                                       | 15.6 | 13        |
| 83 | Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews, 2020, 49, 5407-5445.                                                                                                      | 18.7 | 264       |
| 84 | Charge Transport Properties of Lithium Superoxide in Li–O <sub>2</sub> Batteries. ACS Applied Energy<br>Materials, 2020, 3, 12575-12583.                                                                                                                           | 2.5  | 17        |
| 85 | TEM Studies on the Role of Local Chemistry and Atomic Structure in Battery Materials. Microscopy<br>and Microanalysis, 2020, 26, 148-149.                                                                                                                          | 0.2  | 1         |
| 86 | Durable hybrid electrocatalysts for proton exchange membrane fuel cells. Nano Energy, 2020, 77,<br>105192.                                                                                                                                                         | 8.2  | 21        |
| 87 | A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and<br>advanced structures. Chemical Society Reviews, 2020, 49, 8790-8839.                                                                                       | 18.7 | 461       |
| 88 | A disordered rock salt anode for fast-charging lithium-ion batteries. Nature, 2020, 585, 63-67.                                                                                                                                                                    | 13.7 | 326       |
| 89 | Lithium Anodes: Understanding the Reactivity of a Thin<br>Li <sub>1.5</sub> Al <sub>0.5</sub> Ge <sub>1.5</sub> (PO <sub>4</sub> ) <sub>3</sub> Solidâ€&tate<br>Electrolyte toward Metallic Lithium Anode (Adv. Energy Mater. 32/2020). Advanced Energy Materials, | 10.2 | 2         |
| 90 | TiO <sub>2</sub> Nanocrystalâ€Framed Li <sub>2</sub> TiSiO <sub>5</sub> Platelets for Lowâ€Voltage Lithium Battery Anode. Advanced Functional Materials, 2020, 30, 2001909.                                                                                        | 7.8  | 25        |

| #   | Article                                                                                                                                                                                                                                                    | IF      | CITATIONS  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|
| 91  | Challenges and Strategies to Advance Highâ€Energy Nickelâ€Rich Layered Lithium Transition Metal Oxide<br>Cathodes for Harsh Operation. Advanced Functional Materials, 2020, 30, 2004748.                                                                   | 7.8     | 146        |
| 92  | Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports.<br>Nature Communications, 2020, 11, 6373.                                                                                                              | 5.8     | 65         |
| 93  | Titelbild: Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries (Angew. Chem.) Tj ET(                                                                                                                                                 | Qq110.7 | 84314 rgBT |
| 94  | Probing the Thermal-Driven Structural and Chemical Degradation of Ni-Rich Layered Cathodes by Co/Mn Exchange. Journal of the American Chemical Society, 2020, 142, 19745-19753.                                                                            | 6.6     | 122        |
| 95  | Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries. Angewandte Chemie, 2020,<br>132, 23178-23182.                                                                                                                                   | 1.6     | 8          |
| 96  | From Sodium–Oxygen to Sodium–Air Battery: Enabled by Sodium Peroxide Dihydrate. Nano Letters,<br>2020, 20, 4681-4686.                                                                                                                                      | 4.5     | 31         |
| 97  | Regulating the Hidden Solvationâ€Ionâ€Exchange in Concentrated Electrolytes for Stable and Safe Lithium<br>Metal Batteries. Advanced Energy Materials, 2020, 10, 2000901.                                                                                  | 10.2    | 65         |
| 98  | Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries. Chemical Society Reviews, 2020, 49, 4667-4680.                                                                                                    | 18.7    | 88         |
| 99  | Revealing the Structural Evolution and Phase Transformation of O3-Type<br>NaNi <sub>1/3</sub> Fe <sub>1/3</sub> Mn <sub>1/3</sub> O <sub>2</sub> Cathode Material on Sintering<br>and Cycling Processes. ACS Applied Energy Materials, 2020, 3, 6107-6114. | 2.5     | 19         |
| 100 | Probing solid-state reaction through microstrain: A case study on synthesis of LiCoO2. Journal of Power Sources, 2020, 469, 228422.                                                                                                                        | 4.0     | 17         |
| 101 | Computational study of the adsorption of bimetallic clusters on alumina substrate. Surface Science, 2020, 700, 121682.                                                                                                                                     | 0.8     | 2          |
| 102 | Oxygen-Based Anion Redox for Lithium Batteries. Accounts of Chemical Research, 2020, 53, 1436-1444.                                                                                                                                                        | 7.6     | 21         |
| 103 | Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur<br>Redox Kinetics for Practical Highâ€Energy Liâ€5 Batteries. Angewandte Chemie - International Edition,<br>2020, 59, 17634-17640.                           | 7.2     | 67         |
| 104 | Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur<br>Redox Kinetics for Practical Highâ€Energy Liâ€S Batteries. Angewandte Chemie, 2020, 132, 17787-17793.                                                     | 1.6     | 10         |
| 105 | Understanding the Reactivity of a Thin<br>Li <sub>1.5</sub> Al <sub>0.5</sub> Ge <sub>1.5</sub> (PO <sub>4</sub> ) <sub>3</sub> Solidâ€State<br>Electrolyte toward Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001497.                   | 10.2    | 49         |
| 106 | Solvation Rule for Solidâ€Electrolyte Interphase Enabler in Lithiumâ€Metal Batteries. Angewandte Chemie,<br>2020, 132, 18386-18390.                                                                                                                        | 1.6     | 10         |
| 107 | Solvation Rule for Solidâ€Electrolyte Interphase Enabler in Lithiumâ€Metal Batteries. Angewandte Chemie<br>- International Edition, 2020, 59, 18229-18233.                                                                                                 | 7.2     | 45         |
| 108 | Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nature<br>Reviews Materials, 2020, 5, 276-294.                                                                                                                         | 23.3    | 284        |

| #   | Article                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety. Nano Energy, 2020, 71, 104643.                                                              | 8.2  | 72        |
| 110 | Optimization of oxygen electrode combined with soluble catalyst to enhance the performance of<br>lithium–oxygen battery. Energy Storage Materials, 2020, 28, 73-81.                               | 9.5  | 12        |
| 111 | Solution Blowing Synthesis of Li-Conductive Ceramic Nanofibers. ACS Applied Materials &<br>Interfaces, 2020, 12, 16200-16208.                                                                     | 4.0  | 15        |
| 112 | Cationic and anionic redox in lithium-ion based batteries. Chemical Society Reviews, 2020, 49, 1688-1705.                                                                                         | 18.7 | 152       |
| 113 | A Facile Approach to High Precision Detection of Cell-to-Cell Variation for Li-ion Batteries. Scientific Reports, 2020, 10, 7182.                                                                 | 1.6  | 16        |
| 114 | Bringing forward the development of battery cells for automotive applications: Perspective of<br>R&D activities in China, Japan, the EU and the USA. Journal of Power Sources, 2020, 459, 228073. | 4.0  | 109       |
| 115 | Highly Reversible Sodiation/Desodiation from a Carbon-Sandwiched SnS <sub>2</sub> Nanosheet<br>Anode for Sodium Ion Batteries. Nano Letters, 2020, 20, 3844-3851.                                 | 4.5  | 69        |
| 116 | A practical phosphorus-based anode material for high-energy lithium-ion batteries. Nano Energy, 2020,<br>74, 104849.                                                                              | 8.2  | 56        |
| 117 | Revisiting the Role of Conductivity and Polarity of Host Materials for Longâ€Life Lithium–Sulfur<br>Battery. Advanced Energy Materials, 2020, 10, 1903934.                                        | 10.2 | 52        |
| 118 | Nickel-based Cathode for Li-ion Batteries. , 2020, , 204-226.                                                                                                                                     |      | 0         |
| 119 | High rate and long cycle life in Li-O2 batteries with highly efficient catalytic cathode configured with<br>Co3O4 nanoflower. Nano Energy, 2019, 64, 103896.                                      | 8.2  | 71        |
| 120 | Tuning Li <sub>2</sub> O <sub>2</sub> Formation Routes by Facet Engineering of MnO <sub>2</sub><br>Cathode Catalysts. Journal of the American Chemical Society, 2019, 141, 12832-12838.           | 6.6  | 107       |
| 121 | Selective Growth of a Discontinuous Subnanometer Pd Film on Carbon Defects for Li–O <sub>2</sub><br>Batteries. ACS Energy Letters, 2019, 4, 2782-2786.                                            | 8.8  | 50        |
| 122 | Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nature Communications, 2019, 10, 4721.                                                 | 5.8  | 182       |
| 123 | Cooling Induced Surface Reconstruction during Synthesis of Highâ€Ni Layered Oxides. Advanced Energy<br>Materials, 2019, 9, 1901915.                                                               | 10.2 | 34        |
| 124 | <i>In Situ</i> Formed Ir <sub>3</sub> Li Nanoparticles as Active Cathode Material in Li–Oxygen<br>Batteries. Journal of Physical Chemistry A, 2019, 123, 10047-10056.                             | 1.1  | 11        |
| 125 | Silica Restricting the Sulfur Volatilization of Nickel Sulfide for Highâ€Performance Lithiumâ€lon<br>Batteries. Advanced Energy Materials, 2019, 9, 1901153.                                      | 10.2 | 94        |
| 126 | The Role of Ru in Improving the Activity of Pd toward Hydrogen Evolution and Oxidation Reactions in Alkaline Solutions. ACS Catalysis, 2019, 9, 9614-9621.                                        | 5.5  | 112       |

| #   | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | An advanced high energy-efficiency rechargeable aluminum-selenium battery. Nano Energy, 2019, 66,<br>104159.                                                                                                      | 8.2  | 39        |
| 128 | Insights into Li/Ni ordering and surface reconstruction during synthesis of Ni-rich layered oxides.<br>Journal of Materials Chemistry A, 2019, 7, 513-519.                                                        | 5.2  | 92        |
| 129 | Rational Design of Graphene upported Single Atom Catalysts for Hydrogen Evolution Reaction.<br>Advanced Energy Materials, 2019, 9, 1803689.                                                                       | 10.2 | 279       |
| 130 | Sub-5â€ <sup>-</sup> nm edge-rich 1T′-ReSe2 as bifunctional materials for hydrogen evolution and sodium-ion storage.<br>Nano Energy, 2019, 58, 660-668.                                                           | 8.2  | 41        |
| 131 | Exploring the charge reactions in a Li–O <sub>2</sub> system with lithium oxide cathodes and nonaqueous electrolytes. Journal of Materials Chemistry A, 2019, 7, 15615-15620.                                     | 5.2  | 6         |
| 132 | Insights into Structural Evolution of Lithium Peroxides with Reduced Charge Overpotential in<br>Liâ~O <sub>2</sub> System. Advanced Energy Materials, 2019, 9, 1900662.                                           | 10.2 | 38        |
| 133 | Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 2019, 9, 1900161.                                                                                             | 10.2 | 865       |
| 134 | Revealing the Atomic Origin of Heterogeneous Liâ€ŀon Diffusion by Probing Na. Advanced Materials, 2019,<br>31, e1805889.                                                                                          | 11.1 | 30        |
| 135 | E-fuel system: a conceptual breakthrough for energy storage. Science Bulletin, 2019, 64, 227-228.                                                                                                                 | 4.3  | 5         |
| 136 | A Selection Rule for Hydrofluoroether Electrolyte Cosolvent: Establishing a Linear Freeâ€Energy<br>Relationship in Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 10701-10705.                           | 1.6  | 12        |
| 137 | A Selection Rule for Hydrofluoroether Electrolyte Cosolvent: Establishing a Linear Freeâ€Energy<br>Relationship in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58,<br>10591-10595. | 7.2  | 36        |
| 138 | Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nature Energy, 2019, 4, 484-494.                                            | 19.8 | 345       |
| 139 | Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte. Nature Communications, 2019, 10, 1890.                                                            | 5.8  | 49        |
| 140 | Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nature Nanotechnology, 2019, 14, 602-608.                                                                                                  | 15.6 | 321       |
| 141 | Oxygen Release Degradation in Liâ€lon Battery Cathode Materials: Mechanisms and Mitigating<br>Approaches. Advanced Energy Materials, 2019, 9, 1900551.                                                            | 10.2 | 293       |
| 142 | Solvating power series of electrolyte solvents for lithium batteries. Energy and Environmental Science, 2019, 12, 1249-1254.                                                                                      | 15.6 | 138       |
| 143 | Intrinsic Role of Cationic Substitution in Tuning Li/Ni Mixing in High-Ni Layered Oxides. Chemistry of Materials, 2019, 31, 2731-2740.                                                                            | 3.2  | 85        |
| 144 | Methacrylated gelatin-embedded fabrication of 3D graphene-supported Co3O4 nanoparticles for water splitting. Nanoscale, 2019, 11, 6866-6875.                                                                      | 2.8  | 13        |

| #   | Article                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy, 2019, 61, 60-68.                                              | 8.2  | 192       |
| 146 | Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode. Chemistry of Materials, 2019, 31, 2723-2730.                                         | 3.2  | 114       |
| 147 | Antiâ€Oxygen Leaking LiCoO <sub>2</sub> . Advanced Functional Materials, 2019, 29, 1901110.                                                                                                     | 7.8  | 60        |
| 148 | Bridging the academic and industrial metrics for next-generation practical batteries. Nature Nanotechnology, 2019, 14, 200-207.                                                                 | 15.6 | 420       |
| 149 | Lithiumâ€lon Batteries: Cooling Induced Surface Reconstruction during Synthesis of Highâ€Ni Layered<br>Oxides (Adv. Energy Mater. 43/2019). Advanced Energy Materials, 2019, 9, 1970173.        | 10.2 | 0         |
| 150 | Recent Advances in Flexible Zincâ€Based Rechargeable Batteries. Advanced Energy Materials, 2019, 9,<br>1802605.                                                                                 | 10.2 | 296       |
| 151 | Fundamental Understanding of Waterâ€Induced Mechanisms in Li–O <sub>2</sub> Batteries: Recent<br>Developments and Perspectives. Advanced Materials, 2019, 31, e1805602.                         | 11.1 | 52        |
| 152 | In situ quantification of interphasial chemistry in Li-ion battery. Nature Nanotechnology, 2019, 14,<br>50-56.                                                                                  | 15.6 | 373       |
| 153 | Impact of alginate and fluoroethylene carbonate on the electrochemical performance of SiO–SnCoC<br>anode for lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 397-405. | 1.2  | 2         |
| 154 | Solid‧tate Lithium/Selenium–Sulfur Chemistry Enabled via a Robust Solidâ€Electrolyte Interphase.<br>Advanced Energy Materials, 2019, 9, 1802235.                                                | 10.2 | 63        |
| 155 | Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries. Energy Storage<br>Materials, 2019, 17, 284-292.                                                             | 9.5  | 115       |
| 156 | The Absence and Importance of Operando Techniques for Metalâ€Free Catalysts. Advanced Materials,<br>2019, 31, e1805609.                                                                         | 11.1 | 25        |
| 157 | Ordering Heterogeneity of [MnO6] Octahedra in Tunnel-Structured MnO2 and Its Influence on Ion Storage. Joule, 2019, 3, 471-484.                                                                 | 11.7 | 123       |
| 158 | Lithiation-Induced Non-Noble Metal Nanoparticles for Li–O <sub>2</sub> Batteries. ACS Applied<br>Materials & Interfaces, 2019, 11, 811-818.                                                     | 4.0  | 16        |
| 159 | Native Vacancy Enhanced Oxygen Redox Reversibility and Structural Robustness. Advanced Energy<br>Materials, 2019, 9, 1803087.                                                                   | 10.2 | 70        |
| 160 | Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. Journal of Power Sources, 2019, 412, 336-343.                     | 4.0  | 109       |
| 161 | A Critical Review on Superoxideâ€Based Sodium–Oxygen Batteries. Small Methods, 2019, 3, 1800247                                                                                                 | 4.6  | 29        |
| 162 | Insights into the Na <sup>+</sup> Storage Mechanism of Phosphorusâ€Functionalized Hard Carbon as<br>Ultrahigh Capacity Anodes. Advanced Energy Materials, 2018, 8, 1702781.                     | 10.2 | 170       |

| #   | Article                                                                                                                                                                                                                                                                                                                                            | IF      | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| 163 | Encapsulating Various Sulfur Allotropes within Graphene Nanocages for Longâ€Lasting Lithium<br>Storage. Advanced Functional Materials, 2018, 28, 1706443.                                                                                                                                                                                          | 7.8     | 60        |
| 164 | High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 35-53.                                                                                                                                                                                                                           | 13.1    | 514       |
| 16  | 5 Elucidating anionic oxygen activity in lithium-rich layered oxides. Nature Communications, 2018, 9, 947.                                                                                                                                                                                                                                         | 5.8     | 241       |
| 160 | Insight into Ca‣ubstitution Effects on O3â€Type<br>5 NaNi <sub>1/3</sub> Fe <sub>1/3</sub> Mn <sub>1/3</sub> O <sub>2</sub> Cathode Materials for<br>Sodiumâ€Ion Batteries Application. Small, 2018, 14, e1704523.                                                                                                                                 | 5.2     | 97        |
| 167 | Identification and Implications of Lithium Superoxide in Li–O <sub>2</sub> Batteries. ACS Energy Letters, 2018, 3, 1105-1109.                                                                                                                                                                                                                      | 8.8     | 47        |
| 168 | <sup>3</sup> Effect of Componential Proportion in Bimetallic Electrocatalysts on the Aprotic Lithiumâ€Oxygen<br>Battery Performance. Advanced Energy Materials, 2018, 8, 1703230.                                                                                                                                                                  | 10.2    | 32        |
| 169 | Stabilization of a High-Capacity and High-Power Nickel-Based Cathode for Li-Ion Batteries. CheM, 2018, 4, 690-704.                                                                                                                                                                                                                                 | 5.8     | 128       |
| 170 | Reversible Redox Chemistry of Azo Compounds for Sodiumâ€lon Batteries. Angewandte Chemie -<br>International Edition, 2018, 57, 2879-2883.                                                                                                                                                                                                          | 7.2     | 159       |
| 171 | Reversible Redox Chemistry of Azo Compounds for Sodiumâ€lon Batteries. Angewandte Chemie, 2018, 130,<br>2929-2933.                                                                                                                                                                                                                                 | 1.6     | 33        |
| 172 | , Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance<br>Sodiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1702403.                                                                                                                                                                        | 10.2    | 221       |
| 178 | High-Capacity Sodium Peroxide Based Na–O <sub>2</sub> Batteries with Low Charge Overpotential via a Nanostructured Catalytic Cathode. ACS Energy Letters, 2018, 3, 276-277.                                                                                                                                                                        | 8.8     | 15        |
| 174 | Modifying the Surface of a High-Voltage Lithium-Ion Cathode. ACS Applied Energy Materials, 2018, 1, 2254-2260.                                                                                                                                                                                                                                     | 2.5     | 46        |
| 175 | Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries. Nano Energy, 2018, 49, 338-345.                                                                                                                                                                                                             | 8.2     | 59        |
| 176 | Mechanism of the First Lithiation/Delithiation Process in the Anode Material<br>CoFeOPO <sub>4</sub> @C for Li-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 7139-7148.                                                                                                                                                               | 1.5     | 18        |
| 177 | Cations controlled growth of β-MnO2 crystals with tunable facets for electrochemical energy storage. Nano Energy, 2018, 48, 301-311.                                                                                                                                                                                                               | 8.2     | 56        |
| 178 | Energy-driven surface evolution in beta-MnO2 structures. Nano Research, 2018, 11, 206-215.                                                                                                                                                                                                                                                         | 5.8     | 15        |
| 179 | On the<br>P2-Na <i><sub>x</sub></i> Co <sub>1â€"<i>y</i></sub> (Mn <sub>2/3</sub> Ni <sub>1/3</sub> ) <i>y</i> O <sub>2&lt;<br/>Cathode Materials for Sodium-Ion Batteries: Synthesis, Electrochemical Performance, and Redox<br/>Processes Occurring during the Electrochemical Cycling. ACS Applied Materials &amp; amp; Interfaces, 2018,</sub> | <br>4.0 | 32        |
| 180 | Asymmetric K/Li-Ion Battery Based on Intercalation Selectivity. ACS Energy Letters, 2018, 3, 65-71.                                                                                                                                                                                                                                                | 8.8     | 36        |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D<br>Titania-Graphene Hybrid. Nano Letters, 2018, 18, 336-346.                                                                  | 4.5  | 40        |
| 182 | Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes – a critical review. Energy and Environmental Science, 2018, 11, 243-257.                          | 15.6 | 618       |
| 183 | Textile Inspired Lithium–Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.<br>Advanced Materials, 2018, 30, 1704907.                                                                               | 11.1 | 92        |
| 184 | Protecting Al foils for high-voltage lithium-ion chemistries. Materials Today Energy, 2018, 7, 18-26.                                                                                                                   | 2.5  | 24        |
| 185 | Triphase electrode performance adjustment for rechargeable ion batteries. Nano Energy, 2018, 43, 1-10.                                                                                                                  | 8.2  | 34        |
| 186 | Short Hydrogen Bonds on Reconstructed Nanocrystal Surface Enhance Oxygen Evolution Activity.<br>ACS Catalysis, 2018, 8, 466-473.                                                                                        | 5.5  | 20        |
| 187 | The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies.<br>Electrochemical Energy Reviews, 2018, 1, 461-482.                                                                      | 13.1 | 215       |
| 188 | Hybrid Li-Ion and Li-O2 Battery Enabled by Oxyhalogen-Sulfur Electrochemistry. Joule, 2018, 2, 2381-2392.                                                                                                               | 11.7 | 14        |
| 189 | Nitrogen and sulfur co-doped porous carbon sheets for energy storage and pH-universal oxygen reduction reaction. Nano Energy, 2018, 54, 192-199.                                                                        | 8.2  | 83        |
| 190 | Temperature-Sensitive Structure Evolution of Lithium–Manganese-Rich Layered Oxides for Lithium-Ion<br>Batteries. Journal of the American Chemical Society, 2018, 140, 15279-15289.                                      | 6.6  | 163       |
| 191 | Insights into the Performance Degradation of Oxygen-Type Manganese-Rich Layered Oxide Cathodes for<br>High-Voltage Sodium-Ion Batteries. ACS Applied Energy Materials, 2018, , .                                        | 2.5  | 2         |
| 192 | Investigation of the Effect of Graphene-encapsulation on the O2 Release Phenomenon from LixCoO2,<br>Studied by In-situ Heating STEM/EELS. Microscopy and Microanalysis, 2018, 24, 1626-1627.                            | 0.2  | 0         |
| 193 | Cationic Ordering Coupled to Reconstruction of Basic Building Units during Synthesis of High-Ni<br>Layered Oxides. Journal of the American Chemical Society, 2018, 140, 12484-12492.                                    | 6.6  | 113       |
| 194 | Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li–O <sub>2</sub><br>Batteries: Recent Progress and Perspective. Advanced Energy Materials, 2018, 8, 1800348.                              | 10.2 | 137       |
| 195 | The Relationship between the Relative Solvating Power of Electrolytes and Shuttling Effect of Lithium<br>Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2018, 57,<br>12033-12036. | 7.2  | 69        |
| 196 | Identifying the Structural Evolution of the Sodium Ion Battery Na <sub>2</sub> FePO <sub>4</sub> F<br>Cathode. Angewandte Chemie - International Edition, 2018, 57, 11918-11923.                                        | 7.2  | 79        |
| 197 | Identifying the Structural Evolution of the Sodium Ion Battery Na <sub>2</sub> FePO <sub>4</sub> F<br>Cathode. Angewandte Chemie, 2018, 130, 12094-12099.                                                               | 1.6  | 22        |
| 198 | The Relationship between the Relative Solvating Power of Electrolytes and Shuttling Effect of Lithium<br>Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie, 2018, 130, 12209-12212.                           | 1.6  | 17        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Probing Thermal and Chemical Stability of<br>Na <sub><i>x</i></sub> Ni <sub>1/3</sub> Fe <sub>1/3</sub> Mn <sub>1/3</sub> O <sub>2</sub> Cathode<br>Material toward Safe Sodium-Ion Batteries. Chemistry of Materials, 2018, 30, 4909-4918. | 3.2  | 64        |
| 200 | Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13, 715-722.                                                                                                         | 15.6 | 964       |
| 201 | Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule, 2018, 2, 2047-2064.                                                                                                                                         | 11.7 | 442       |
| 202 | Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective. Nano Energy, 2018, 52, 279-291.                                                                                                            | 8.2  | 211       |
| 203 | Revealing the Rate-Limiting Li-Ion Diffusion Pathway in Ultrathick Electrodes for Li-Ion Batteries.<br>Journal of Physical Chemistry Letters, 2018, 9, 5100-5104.                                                                           | 2.1  | 143       |
| 204 | Tunnel Intergrowth Structures in Manganese Dioxide and Their Influence on Ion Storage. Microscopy and Microanalysis, 2018, 24, 1500-1501.                                                                                                   | 0.2  | 1         |
| 205 | 30 Years of Lithiumâ€ion Batteries. Advanced Materials, 2018, 30, e1800561.                                                                                                                                                                 | 11.1 | 3,039     |
| 206 | Internally Referenced DOSY-NMR: A Novel Analytical Method in Revealing the Solution Structure of<br>Lithium-Ion Battery Electrolytes. Journal of Physical Chemistry Letters, 2018, 9, 3714-3719.                                            | 2.1  | 25        |
| 207 | Insights into the Distinct Lithiation/Sodiation of Porous Cobalt Oxide by in Operando Synchrotron<br>X-ray Techniques and Ab Initio Molecular Dynamics Simulations. Nano Letters, 2017, 17, 953-962.                                        | 4.5  | 30        |
| 208 | Selenium and Selenium–Sulfur Chemistry for Rechargeable Lithium Batteries: Interplay of Cathode<br>Structures, Electrolytes, and Interfaces. ACS Energy Letters, 2017, 2, 605-614.                                                          | 8.8  | 110       |
| 209 | Freestanding highly defect nitrogen-enriched carbon nanofibers for lithium ion battery thin-film<br>anodes. Journal of Materials Chemistry A, 2017, 5, 5532-5540.                                                                           | 5.2  | 33        |
| 210 | Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries. Journal of<br>Physical Chemistry Letters, 2017, 8, 1072-1077.                                                                                          | 2.1  | 156       |
| 211 | State-of-the-art characterization techniques for advanced lithium-ion batteries. Nature Energy, 2017, 2, .                                                                                                                                  | 19.8 | 337       |
| 212 | Facet-Dependent Thermal Instability in LiCoO <sub>2</sub> . Nano Letters, 2017, 17, 2165-2171.                                                                                                                                              | 4.5  | 99        |
| 213 | Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal<br>Graphene Dispersion. Nano Letters, 2017, 17, 2539-2546.                                                                                  | 4.5  | 81        |
| 214 | Depolarization effect to enhance the performance of lithium ions batteries. Nano Energy, 2017, 33, 497-507.                                                                                                                                 | 8.2  | 79        |
| 215 | Parasitic Reactions in Nanosized Silicon Anodes for Lithium-Ion Batteries. Nano Letters, 2017, 17, 1512-1519.                                                                                                                               | 4.5  | 122       |
| 216 | Tuning the Solid Electrolyte Interphase for Selective Li―and Naâ€Ion Storage in Hard Carbon. Advanced<br>Materials, 2017, 29, 1606860.                                                                                                      | 11.1 | 157       |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Toward Highly Efficient Electrocatalyst for Li–O <sub>2</sub> Batteries Using Biphasic N-Doping<br>Cobalt@Graphene Multiple-Capsule Heterostructures. Nano Letters, 2017, 17, 2959-2966.                                                               | 4.5  | 91        |
| 218 | Open‧tructured V <sub>2</sub> O <sub>5</sub> · <i>n</i> H <sub>2</sub> O Nanoflakes as Highly<br>Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries. Advanced<br>Energy Materials, 2017, 7, 1602720.                   | 10.2 | 116       |
| 219 | Lithium Superoxide Hydrolysis and Relevance to Li–O <sub>2</sub> Batteries. Journal of Physical Chemistry C, 2017, 121, 9657-9661.                                                                                                                     | 1.5  | 41        |
| 220 | Electrolyte design strategies and research progress for room-temperature sodium-ion batteries.<br>Energy and Environmental Science, 2017, 10, 1075-1101.                                                                                               | 15.6 | 459       |
| 221 | Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nature<br>Communications, 2017, 8, 15139.                                                                                                                        | 5.8  | 343       |
| 222 | Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in<br>an aprotic lithium-oxygen battery: An experimental and theoretical modeling study. Nano Research,<br>2017, 10, 4327-4336.                         | 5.8  | 12        |
| 223 | Oxygenâ€Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium–Air Battery<br>Electrode. Advanced Science, 2017, 4, 1600453.                                                                                                          | 5.6  | 22        |
| 224 | Sodium Peroxide Dihydrate or Sodium Superoxide: The Importance of the Cell Configuration for<br>Sodium–Oxygen Batteries. Small Methods, 2017, 1, 1700102.                                                                                              | 4.6  | 34        |
| 225 | Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1677-1693.                                                                                        | 15.6 | 143       |
| 226 | Two-Dimensional Holey Co <sub>3</sub> O <sub>4</sub> Nanosheets for High-Rate Alkali-Ion Batteries:<br>From Rational Synthesis to in Situ Probing. Nano Letters, 2017, 17, 3907-3913.                                                                  | 4.5  | 158       |
| 227 | Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6197-6202.                                                              | 3.3  | 151       |
| 228 | Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–SÂbatteries.<br>Nature Energy, 2017, 2, .                                                                                                                         | 19.8 | 349       |
| 229 | Advanced Lithium Batteries for Automobile Applications at ABAA-9. ACS Energy Letters, 2017, 2, 1628-1631.                                                                                                                                              | 8.8  | 4         |
| 230 | Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries.<br>Nano Energy, 2017, 35, 370-378.                                                                                                                 | 8.2  | 116       |
| 231 | Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy<br>X-ray diffraction and X-ray absorption near edge spectroscopy. Journal of Power Sources, 2017, 341,<br>114-121.                               | 4.0  | 23        |
| 232 | 3D Hierarchical nano-flake/micro-flower iron fluoride with hydration water induced tunnels for secondary lithium battery cathodes. Nano Energy, 2017, 32, 10-18.                                                                                       | 8.2  | 73        |
| 233 | Correlations between Transition-Metal Chemistry, Local Structure, and Global Structure in<br>Li <sub>2</sub> Ru <sub>0.5</sub> Mn <sub>0.5</sub> O <sub>3</sub> Investigated in a Wide Voltage<br>Window. Chemistry of Materials, 2017, 29, 9053-9065. | 3.2  | 40        |
| 234 | Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in Highâ€Ni Layered Oxide<br>Cathodes. Advanced Materials, 2017, 29, 1606715.                                                                                                      | 11.1 | 127       |

| #   | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nature Communications, 2017, 8, .                                                                                                                               | 5.8  | 301       |
| 236 | Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. Nature Communications, 2017, 8, 627.                                                                                                                                                       | 5.8  | 110       |
| 237 | Metalâ€lon Batteries: Open‣tructured V <sub>2</sub> O <sub>5</sub> · <i>n</i> H <sub>2</sub> O<br>Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation<br>Batteries (Adv. Energy Mater. 14/2017). Advanced Energy Materials, 2017, 7, . | 10.2 | 23        |
| 238 | Excess Li-lon Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance.<br>Nano Letters, 2017, 17, 6018-6026.                                                                                                                                              | 4.5  | 53        |
| 239 | In Situ TEM Investigation of ZnO Nanowires during Sodiation and Lithiation Cycling. Small Methods, 2017, 1, 1700202.                                                                                                                                                             | 4.6  | 45        |
| 240 | Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode–Electrolyte Interface in<br>Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 44542-44549.                                                                                        | 4.0  | 58        |
| 241 | Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox. Nature Energy, 2017, 2, 963-971.                                                                                                                         | 19.8 | 140       |
| 242 | Exploring Highly Reversible 1.5-Electron Reactions (V <sup>3+</sup> /V <sup>4+</sup> /V <sup>5+</sup> )<br>in Na <sub>3</sub> VCr(PO <sub>4</sub> ) <sub>3</sub> Cathode for Sodium-Ion Batteries. ACS Applied<br>Materials & Interfaces, 2017, 9, 43632-43639.                  | 4.0  | 134       |
| 243 | Interfacial reactions in lithium batteries. Journal Physics D: Applied Physics, 2017, 50, 303001.                                                                                                                                                                                | 1.3  | 13        |
| 244 | In Situ Probing and Synthetic Control of Cationic Ordering in Niâ€Rich Layered Oxide Cathodes.<br>Advanced Energy Materials, 2017, 7, 1601266.                                                                                                                                   | 10.2 | 200       |
| 245 | High performance lithium-manganese-rich cathode material with reduced impurities. Nano Energy, 2017, 31, 247-257.                                                                                                                                                                | 8.2  | 25        |
| 246 | Tuning the Mn Deposition on the Anode to Improve the Cycle Performance of the Mnâ€Based Lithium Ion<br>Battery. Advanced Materials Interfaces, 2016, 3, 1500856.                                                                                                                 | 1.9  | 35        |
| 247 | 3Dâ€Printed Cathodes of LiMn <sub>1â^'</sub> <i><sub>x</sub></i> Fe <i><sub>x</sub></i> PO <sub>4</sub><br>Nanocrystals Achieve Both Ultrahigh Rate and High Capacity for Advanced Lithiumâ€Ion Battery.<br>Advanced Energy Materials, 2016, 6, 1600856.                         | 10.2 | 157       |
| 248 | Highâ€Rate, Durable Sodiumâ€lon Battery Cathode Enabled by Carbonâ€Coated Microâ€Sized<br>Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> Particles with Interconnected Vertical<br>Nanowalls. Advanced Materials Interfaces, 2016, 3, 1500740.                   | 1.9  | 46        |
| 249 | Enabling high energy density Li-ion batteries through Li2O activation. Nano Energy, 2016, 27, 196-201.                                                                                                                                                                           | 8.2  | 75        |
| 250 | Nitrogenâ€Doped Nanoporous Graphenic Carbon: An Efficient Conducting Support for O <sub>2</sub><br>Cathode. ChemNanoMat, 2016, 2, 692-697.                                                                                                                                       | 1.5  | 38        |
| 251 | Investigating Side Reactions and Coating Effects on High Voltage Layered Cathodes for Lithium Ion Batteries. Microscopy and Microanalysis, 2016, 22, 1312-1313.                                                                                                                  | 0.2  | 0         |
| 252 | Microstructural Evolution in Transition-metal-oxide Cathode Materials for Lithium-Ion Batteries.<br>Microscopy and Microanalysis, 2016, 22, 1300-1301.                                                                                                                           | 0.2  | 2         |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | The role of nanotechnology in the development of battery materials for electric vehicles. Nature<br>Nanotechnology, 2016, 11, 1031-1038.                                                                                                       | 15.6 | 581       |
| 254 | Insight into the Capacity Fading Mechanism of Amorphous Se <sub>2</sub> S <sub>5</sub> Confined in<br>Micro/Mesoporous Carbon Matrix in Ether-Based Electrolytes. Nano Letters, 2016, 16, 2663-2673.                                           | 4.5  | 83        |
| 255 | Uniformly dispersed FeO x atomic clusters by pulsed arc plasma deposition: An efficient<br>electrocatalyst for improving the performance of Li–O2 battery. Nano Research, 2016, 9, 1913-1920.                                                  | 5.8  | 16        |
| 256 | Nanostructured Black Phosphorus/Ketjenblack–Multiwalled Carbon Nanotubes Composite as High<br>Performance Anode Material for Sodium-Ion Batteries. Nano Letters, 2016, 16, 3955-3965.                                                          | 4.5  | 246       |
| 257 | Atomic Layer Deposition for Lithiumâ€Based Batteries. Advanced Materials Interfaces, 2016, 3, 1600564.                                                                                                                                         | 1.9  | 71        |
| 258 | Systematic study on the discharge product of Pt-based lithium oxygen batteries. Journal of Power Sources, 2016, 332, 96-102.                                                                                                                   | 4.0  | 20        |
| 259 | Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel<br>Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries. ACS Applied Materials &<br>Interfaces, 2016, 8, 22227-22237.                | 4.0  | 177       |
| 260 | RuO2 nanoparticles supported on MnO2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery. Nano Energy, 2016, 28, 63-70.                                                                                          | 8.2  | 88        |
| 261 | New Insights into the Instability of Discharge Products in Na–O <sub>2</sub> Batteries. ACS Applied<br>Materials & Interfaces, 2016, 8, 20120-20127.                                                                                           | 4.0  | 63        |
| 262 | Platinumâ€Coated Hollow Graphene Nanocages as Cathode Used in Lithiumâ€Oxygen Batteries. Advanced<br>Functional Materials, 2016, 26, 7626-7633.                                                                                                | 7.8  | 88        |
| 263 | In Operando XRD and TXM Study on the Metastable Structure Change of<br>NaNi <sub>1/3</sub> Fe <sub>1/3</sub> Mn <sub>1/3</sub> O <sub>2</sub> under Electrochemical<br>Sodiumâ€ion Intercalation. Advanced Energy Materials, 2016, 6, 1601306. | 10.2 | 147       |
| 264 | Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li–O <sub>2</sub> Batteries.<br>ACS Applied Materials & Interfaces, 2016, 8, 23635-23645.                                                                              | 4.0  | 93        |
| 265 | The influence of large cations on the electrochemical properties of tunnel-structured metal oxides.<br>Nature Communications, 2016, 7, 13374.                                                                                                  | 5.8  | 180       |
| 266 | Cascading Boost Effect on the Capacity of Nitrogen-Doped Graphene Sheets for Li- and Na-Ion<br>Batteries. ACS Applied Materials & Interfaces, 2016, 8, 26722-26729.                                                                            | 4.0  | 46        |
| 267 | Tuning of Thermal Stability in Layered<br>Li(Ni <sub><i>x</i></sub> Mn <sub><i>y</i></sub> Co <sub><i>z</i></sub> )O <sub>2</sub> . Journal of the<br>American Chemical Society, 2016, 138, 13326-13334.                                       | 6.6  | 178       |
| 268 | High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by PO <sub><i>x</i></sub> Doping.<br>ACS Energy Letters, 2016, 1, 395-401.                                                                                                     | 8.8  | 172       |
| 269 | Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nature<br>Communications, 2016, 7, 11774.                                                                                                                 | 5.8  | 143       |
| 270 | Anion-redox nanolithia cathodes for Li-ion batteries. Nature Energy, 2016, 1, .                                                                                                                                                                | 19.8 | 171       |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Protocol of Electrochemical Test and Characterization of Aprotic Li-O <sub>2</sub><br>Battery. Journal of Visualized Experiments, 2016, , .                                                                                                            | 0.2  | 2         |
| 272 | An Effectively Activated Hierarchical Nanoâ€/Microspherical<br>Li <sub>1.2</sub> Ni <sub>0.2</sub> Mn <sub>0.6</sub> O <sub>2</sub> Cathode for Longâ€Life and Highâ€Rate<br>Lithiumâ€Ion Batteries. ChemSusChem, 2016, 9, 728-735.                    | 3.6  | 65        |
| 273 | Pre-Lithiation of<br>Li(Ni <sub>1-<i>xy</i></sub> Mn <sub><i>x</i></sub> Co <sub><i>y</i></sub> )O <sub>2</sub><br>Materials Enabling Enhancement of Performance for Li-Ion Battery. ACS Applied Materials & amp;<br>Interfaces, 2016, 8, 15361-15368. | 4.0  | 32        |
| 274 | Kinetic Study of Parasitic Reactions in Lithium-Ion Batteries: A Case Study on<br>LiNi <sub>0.6</sub> Mn <sub>0.2</sub> Co <sub>0.2</sub> O <sub>2</sub> . ACS Applied Materials &<br>Interfaces, 2016, 8, 3446-3451.                                  | 4.0  | 88        |
| 275 | Dynamic study of (De)sodiation in alpha-MnO2 nanowires. Nano Energy, 2016, 19, 382-390.                                                                                                                                                                | 8.2  | 54        |
| 276 | Solar-powered electrochemical energy storage: an alternative to solar fuels. Journal of Materials<br>Chemistry A, 2016, 4, 2766-2782.                                                                                                                  | 5.2  | 109       |
| 277 | Probing cation intermixing in Li <sub>2</sub> SnO <sub>3</sub> . RSC Advances, 2016, 6, 31559-31564.                                                                                                                                                   | 1.7  | 10        |
| 278 | Mg-Enriched Engineered Carbon from Lithium-Ion Battery Anode for Phosphate Removal. ACS Applied<br>Materials & Interfaces, 2016, 8, 2905-2909.                                                                                                         | 4.0  | 40        |
| 279 | Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life. Nano Letters, 2016, 16, 1960-1968.                                                                                             | 4.5  | 124       |
| 280 | Understanding atomic scale phenomena within the surface layer of a long-term cycled 5 V spinel electrode. Nano Energy, 2016, 19, 297-306.                                                                                                              | 8.2  | 18        |
| 281 | A lithium–oxygen battery based on lithium superoxide. Nature, 2016, 529, 377-382.                                                                                                                                                                      | 13.7 | 633       |
| 282 | Atomic to Nanoscale Investigation of Functionalities of an Al <sub>2</sub> O <sub>3</sub> Coating<br>Layer on a Cathode for Enhanced Battery Performance. Chemistry of Materials, 2016, 28, 857-863.                                                   | 3.2  | 125       |
| 283 | Insight into the Catalytic Mechanism of Bimetallic Platinum–Copper Core–Shell Nanostructures for<br>Nonaqueous Oxygen Evolution Reactions. Nano Letters, 2016, 16, 781-785.                                                                            | 4.5  | 39        |
| 284 | Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction. Nano<br>Energy, 2016, 19, 522-531.                                                                                                                          | 8.2  | 66        |
| 285 | Microstructural Characterization of Air Electrode Architectures in Lithium-Oxygen Batteries.<br>Microscopy and Microanalysis, 2015, 21, 1373-1374.                                                                                                     | 0.2  | 3         |
| 286 | Progress in Mechanistic Understanding and Characterization Techniques of Liâ€ <del>S</del> Batteries. Advanced Energy Materials, 2015, 5, 1500408.                                                                                                     | 10.2 | 400       |
| 287 | Scalable Preparation of Ternary Hierarchical Silicon Oxide–Nickel–Graphite Composites for<br>Lithiumâ€ion Batteries. ChemSusChem, 2015, 8, 4073-4080.                                                                                                  | 3.6  | 40        |
| 288 | A Rigid Naphthalenediimide Triangle for Organic Rechargeable Lithiumâ€lon Batteries. Advanced<br>Materials, 2015, 27, 2907-2912.                                                                                                                       | 11.1 | 145       |

| #   | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Lithiumâ€Rich Nanoscale<br>Li <sub>1.2</sub> Mn <sub>0.54</sub> Ni <sub>0.13</sub> Co <sub>0.13</sub> O <sub>2</sub> Cathode<br>Material Prepared by Coâ€Precipitation Combined Freeze Drying (CP–FD) for Lithiumâ€Ion Batteries. Energy<br>Technology, 2015, 3, 843-850. | 1.8 | 46        |
| 290 | High‣peed Fabrication of Lithiumâ€lon Battery Electrodes by UVâ€Curing. Energy Technology, 2015, 3,<br>469-475.                                                                                                                                                           | 1.8 | 13        |
| 291 | Dimeric [Mo <sub>2</sub> S <sub>12</sub> ] <sup>2â^'</sup> Cluster: A Molecular Analogue of<br>MoS <sub>2</sub> Edges for Superior Hydrogenâ€Evolution Electrocatalysis. Angewandte Chemie -<br>International Edition, 2015, 54, 15181-15185.                             | 7.2 | 160       |
| 292 | Exploring Lithium-ion Battery Performance through in situ Characterization. Microscopy and Microanalysis, 2015, 21, 1541-1542.                                                                                                                                            | 0.2 | 0         |
| 293 | Anion Solvation in Carbonate-Based Electrolytes. Journal of Physical Chemistry C, 2015, 119, 27255-27264.                                                                                                                                                                 | 1.5 | 121       |
| 294 | Frontispiece: Implications of the Unpaired Spins in Li-O2Battery Chemistry and Electrochemistry: A<br>Minireview. ChemPlusChem, 2015, 80, n/a-n/a.                                                                                                                        | 1.3 | 0         |
| 295 | Demonstration of highly efficient lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3,<br>4170-4179.                                                                                                                                                      | 5.2 | 51        |
| 296 | Interfacial Effects on Lithium Superoxide Disproportionation in Li-O <sub>2</sub> Batteries. Nano<br>Letters, 2015, 15, 1041-1046.                                                                                                                                        | 4.5 | 92        |
| 297 | A generalized method for high throughput in-situ experiment data analysis: An example of battery materials exploration. Journal of Power Sources, 2015, 279, 246-251.                                                                                                     | 4.0 | 11        |
| 298 | Nanostructured cathode materials for rechargeable lithium batteries. Journal of Power Sources, 2015, 283, 219-236.                                                                                                                                                        | 4.0 | 97        |
| 299 | Enhanced rate performance of LiNi0.5Mn1.5O4 fibers synthesized by electrospinning. Nano Energy, 2015, 15, 616-624.                                                                                                                                                        | 8.2 | 27        |
| 300 | Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen<br>Evolution Reactions in Lithium–Air Batteries. Nano Letters, 2015, 15, 4261-4268.                                                                                     | 4.5 | 149       |
| 301 | Kinetics Tuning of Li-lon Diffusion in Layered<br>Li(Ni <sub><i>x</i></sub> Mn <sub><i>y</i></sub> Co <sub><i>z</i></sub> )O <sub>2</sub> . Journal of the<br>American Chemical Society, 2015, 137, 8364-8367.                                                            | 6.6 | 292       |
| 302 | Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co, and Mn with Li in<br>Layered Lithium Transition-Metal Oxide Cathode Materials. Chemistry of Materials, 2015, 27, 5393-5401.                                                            | 3.2 | 108       |
| 303 | Prelithiation Activates Li(Ni <sub>0.5</sub> Mn <sub>0.3</sub> Co <sub>0.2</sub> )O <sub>2</sub> for<br>High Capacity and Excellent Cycling Stability. Nano Letters, 2015, 15, 5590-5596.                                                                                 | 4.5 | 68        |
| 304 | Improvement of Electrochemical Properties of Lithium–Oxygen Batteries Using a Silver Electrode.<br>Journal of Physical Chemistry C, 2015, 119, 15036-15040.                                                                                                               | 1.5 | 22        |
| 305 | Improve First-Cycle Efficiency and Rate Performance of Layered-Layered<br>Li <sub>1.2</sub> Mn <sub>0.6</sub> Ni <sub>0.2</sub> O <sub>2</sub> Using Oxygen Stabilizing Dopant.<br>ACS Applied Materials & Interfaces, 2015, 7, 16040-16045.                              | 4.0 | 42        |
| 306 | Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy, 2015, 15, 164-176.                                                                                                                       | 8.2 | 162       |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery. Energies, 2015, 8, 529-548.                                                                                                                                | 1.6  | 13        |
| 308 | An organophosphine oxide redox shuttle additive that delivers long-term overcharge protection for 4 V lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10710-10714.                                                                   | 5.2  | 24        |
| 309 | The migration mechanism of transition metal ions in<br>LiNi <sub>0.5</sub> Mn <sub>1.5</sub> O <sub>4</sub> . Journal of Materials Chemistry A, 2015, 3,<br>13031-13038.                                                                               | 5.2  | 20        |
| 310 | Lithiumâ€Ion Batteries: A Rigid Naphthalenediimide Triangle for Organic Rechargeable Lithiumâ€Ion<br>Batteries (Adv. Mater. 18/2015). Advanced Materials, 2015, 27, 2948-2948.                                                                         | 11.1 | 1         |
| 311 | Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery. Nanotechnology, 2015, 26, 164003.                                                                                | 1.3  | 25        |
| 312 | PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. Nano Energy, 2015, 18, 253-264.                                                                                                        | 8.2  | 89        |
| 313 | Review—Understanding and Mitigating Some of the Key Factors that Limit Non-Aqueous Lithium-Air<br>Battery Performance. Journal of the Electrochemical Society, 2015, 162, A2439-A2446.                                                                 | 1.3  | 27        |
| 314 | γ-Fe <sub>2</sub> O <sub>3</sub> Nanocrystalline Microspheres with Hybrid Behavior of<br>Battery-Supercapacitor for Superior Lithium Storage. ACS Applied Materials & Interfaces, 2015, 7,<br>26284-26290.                                             | 4.0  | 58        |
| 315 | Evolution of Lattice Structure and Chemical Composition of the Surface Reconstruction Layer in<br>Li <sub>1.2</sub> Ni <sub>0.2</sub> Mn <sub>0.6</sub> O <sub>2</sub> Cathode Material for Lithium Ion<br>Batteries. Nano Letters, 2015, 15, 514-522. | 4.5  | 261       |
| 316 | Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation. Journal of Power Sources, 2015, 274, 451-457.                                                                                         | 4.0  | 57        |
| 317 | Implications of the Unpaired Spins in Li–O <sub>2</sub> Battery Chemistry and Electrochemistry: A<br>Minireview. ChemPlusChem, 2015, 80, 336-343.                                                                                                      | 1.3  | 17        |
| 318 | Symmetrical Impedance Study on Inactivation Induced Degradation of Lithium Electrodes for Batteries<br>Beyond Lithium-Ion. Journal of the Electrochemical Society, 2014, 161, A827-A830.                                                               | 1.3  | 63        |
| 319 | Rechargeable lithium batteries and beyond: Progress, challenges, and future directions. MRS Bulletin, 2014, 39, 395-401.                                                                                                                               | 1.7  | 226       |
| 320 | Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. Nature Communications, 2014, 5, 5693.                                                                                          | 5.8  | 255       |
| 321 | Molecular Engineering toward Stabilized Interface: An Electrolyte Additive for High-Performance<br>Li-Ion Battery. Journal of the Electrochemical Society, 2014, 161, A2262-A2267.                                                                     | 1.3  | 10        |
| 322 | Insight into Sulfur Reactions in Li–S Batteries. ACS Applied Materials & Interfaces, 2014, 6,<br>21938-21945.                                                                                                                                          | 4.0  | 120       |
| 323 | Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries. Nano Letters, 2014, 14, 416-422.                                                                                                                        | 4.5  | 422       |
| 324 | Separator/Electrode Assembly Based on Thermally Stable Polymer for Safe Lithiumâ€lon Batteries.<br>Advanced Energy Materials, 2014, 4, 1301208.                                                                                                        | 10.2 | 19        |

| #   | Article                                                                                                                                                                                                                                                            | IF     | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 325 | Aprotic and Aqueous Li–O <sub>2</sub> Batteries. Chemical Reviews, 2014, 114, 5611-5640.                                                                                                                                                                           | 23.0   | 975       |
| 326 | Understanding the Rate Capability of Highâ€Energyâ€Density Liâ€Rich Layered<br>Li <sub>1.2</sub> Ni <sub>0.15</sub> Co <sub>0.1</sub> Mn <sub>0.55</sub> O <sub>2</sub> Cathode<br>Materials. Advanced Energy Materials, 2014, 4, 1300950.                         | 10.2   | 480       |
| 327 | Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the<br>Electrolyte of an Aprotic Li–O <sub>2</sub> Battery. Energy Technology, 2014, 2, 348-354.                                                                        | 1.8    | 13        |
| 328 | Controllable crystalline preferred orientation in Li–Co–Ni–Mn oxide cathode thin films for<br>all-solid-state lithium batteries. Nanoscale, 2014, 6, 10611.                                                                                                        | 2.8    | 41        |
| 329 | Migration of Mn cations in delithiated lithium manganese oxides. Physical Chemistry Chemical Physics, 2014, 16, 20697-20702.                                                                                                                                       | 1.3    | 22        |
| 330 | A XANES study of LiVPO4F: a factor analysis approach. Physical Chemistry Chemical Physics, 2014, 16, 3254.                                                                                                                                                         | 1.3    | 19        |
| 331 | Li–Se battery: absence of lithium polyselenides in carbonate based electrolyte. Chemical<br>Communications, 2014, 50, 5576-5579.                                                                                                                                   | 2.2    | 155       |
| 332 | Molecular‣evel Insights into the Reactivity of Siloxaneâ€Based Electrolytes at a Lithiumâ€Metal Anode.<br>ChemPhysChem, 2014, 15, 2077-2083.                                                                                                                       | 1.0    | 9         |
| 333 | Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries. Nature Communications, 2014, 5, 4895.                                                                                                                     | 5.8    | 186       |
| 334 | Nanorod and Nanoparticle Shells in Concentration Gradient Core–Shell Lithium Oxides for<br>Rechargeable Lithium Batteries. ChemSusChem, 2014, 7, 3295-3303.                                                                                                        | 3.6    | 18        |
| 335 | Ultrasonic-assisted co-precipitation to synthesize lithium-rich cathode Li1.3Ni0.21Mn0.64O2+ materials for lithium-ion batteries. Journal of Power Sources, 2014, 272, 922-928.                                                                                    | 4.0    | 22        |
| 336 | High Electrochemical Performances of Microsphere C-TiO <sub>2</sub> Anode for Sodium-Ion Battery.<br>ACS Applied Materials & Interfaces, 2014, 6, 11295-11301.                                                                                                     | 4.0    | 213       |
| 337 | High Capacity O3-Type<br>Na[Li <sub>0.05</sub> (Ni <sub>0.25</sub> Fe <sub>0.25</sub> Mn <sub>0.5</sub> ) <sub>0.95</sub> ]O <sub>2&lt;<br/>Cathode for Sodium Ion Batteries. Chemistry of Materials, 2014, 26, 6165-6171.</sub>                                   | /sanp> | 175       |
| 338 | Probing Thermally Induced Decomposition of Delithiated<br>Li <sub>1.2–<i>x</i></sub> Ni <sub>0.15</sub> Mn <sub>0.55</sub> Co <sub>0.1</sub> O <sub>2</sub> by in<br>Situ High-Energy X-ray Diffraction. ACS Applied Materials & Interfaces, 2014, 6, 12692-12697. | 4.0    | 47        |
| 339 | Differentiating allotropic LiCoO2/Li2Co2O4: A structural and electrochemical study. Journal of Power Sources, 2014, 271, 97-103.                                                                                                                                   | 4.0    | 24        |
| 340 | Development of Microstrain in Aged Lithium Transition Metal Oxides. Nano Letters, 2014, 14, 4873-4880.                                                                                                                                                             | 4.5    | 171       |
| 341 | Raman Evidence for Late Stage Disproportionation in a Li–O <sub>2</sub> Battery. Journal of Physical Chemistry Letters, 2014, 5, 2705-2710.                                                                                                                        | 2.1    | 144       |
| 342 | Advanced<br>Na[Ni <sub>0.25</sub> Fe <sub>0.5</sub> Mn <sub>0.25</sub> ]O <sub>2</sub> /C–Fe <sub>3</sub> O <sub>4&lt;<br/>Sodium-Ion Batteries Using EMS Electrolyte for Energy Storage. Nano Letters, 2014, 14, 1620-1626.</sub>                                 | /sanp> | 283       |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Nanoarchitecture Multi‧tructural Cathode Materials for High Capacity Lithium Batteries. Advanced<br>Functional Materials, 2013, 23, 1070-1075.                                                                                                 | 7.8  | 169       |
| 344 | Titaniumâ€Based Anode Materials for Safe Lithiumâ€Ion Batteries. Advanced Functional Materials, 2013, 23,<br>959-969.                                                                                                                          | 7.8  | 456       |
| 345 | Formation of a Continuous Solidâ€Solution Particle and its Application to Rechargeable Lithium<br>Batteries. Advanced Functional Materials, 2013, 23, 1028-1036.                                                                               | 7.8  | 39        |
| 346 | Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li–O2 batteries. Physical<br>Chemistry Chemical Physics, 2013, 15, 5572.                                                                                         | 1.3  | 76        |
| 347 | Interactions of Dimethoxy Ethane with Li <sub>2</sub> O <sub>2</sub> Clusters and Likely<br>Decomposition Mechanisms for Li–O <sub>2</sub> Batteries. Journal of Physical Chemistry C, 2013, 117,<br>8041-8049.                                | 1.5  | 74        |
| 348 | A high performance separator with improved thermal stability for Li-ion batteries. Journal of<br>Materials Chemistry A, 2013, 1, 8538.                                                                                                         | 5.2  | 33        |
| 349 | A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries.<br>Nature Communications, 2013, 4, 2383.                                                                                                       | 5.8  | 379       |
| 350 | Synthesis of Porous Carbon Supported Palladium Nanoparticle Catalysts by Atomic Layer Deposition:<br>Application for Rechargeable Lithium–O <sub>2</sub> Battery. Nano Letters, 2013, 13, 4182-4189.                                           | 4.5  | 184       |
| 351 | Disproportionation in Li–O <sub>2</sub> Batteries Based on a Large Surface Area Carbon Cathode.<br>Journal of the American Chemical Society, 2013, 135, 15364-15372.                                                                           | 6.6  | 282       |
| 352 | Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S<br>Batteries. Nano Letters, 2013, 13, 4642-4649.                                                                                            | 4.5  | 385       |
| 353 | Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon<br>systems. Nature Communications, 2013, 4, 2437.                                                                                              | 5.8  | 409       |
| 354 | Study of Thermal Decomposition of<br>Li <sub>1â€x</sub> (Ni <sub>1/3</sub> Mn <sub>1/3</sub> Co <sub>1/3</sub> ) <sub>0.9</sub> O <sub>2</sub><br>Using Inâ€5itu Highâ€Energy Xâ€Ray Diffraction. Advanced Energy Materials, 2013, 3, 729-736. | 10.2 | 48        |
| 355 | 3-Hexylthiophene as a Stabilizing Additive for High Voltage Cathodes in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A268-A271.                                                                                   | 1.3  | 55        |
| 356 | The Effect of Oxygen Crossover on the Anode of a Li–O <sub>2</sub> Battery using an Etherâ€Based<br>Solvent: Insights from Experimental and Computational Studies. ChemSusChem, 2013, 6, 51-55.                                                | 3.6  | 231       |
| 357 | Silicon-Graphene Composite Anodes for High-Energy Lithium Batteries. Energy Technology, 2013, 1, 77-84.                                                                                                                                        | 1.8  | 18        |
| 358 | In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery.<br>Journal of Power Sources, 2013, 230, 32-37.                                                                                              | 4.0  | 91        |
| 359 | Ultrasound Assisted Design of Sulfur/Carbon Cathodes with Partially Fluorinated Ether Electrolytes for Highly Efficient Li/S Batteries. Advanced Materials, 2013, 25, 1608-1615.                                                               | 11.1 | 224       |
| 360 | In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: application for rechargeable Li–O2 batteries. Energy and Environmental Science, 2013, 6, 519.                                                              | 15.6 | 175       |

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 361 | New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nature<br>Communications, 2013, 4, 1513.                                                                                                                     | 5.8  | 115       |
| 362 | Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. Journal of Power Sources, 2013, 234, 201-207.                                                                                                          | 4.0  | 237       |
| 363 | Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries. ACS Nano, 2013, 7, 760-767.                                                                                                                            | 7.3  | 772       |
| 364 | Cathode Material with Nanorod Structure—An Application for Advanced High-Energy and Safe Lithium<br>Batteries. Chemistry of Materials, 2013, 25, 2109-2115.                                                                                     | 3.2  | 137       |
| 365 | Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy and Environmental Science, 2013, 6, 1806.                                                                                                                                | 15.6 | 462       |
| 366 | Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine<br>Li <sub>1.2</sub> Ni <sub>0.2</sub> Mn <sub>0.6</sub> O <sub>2</sub> for Li-Ion Batteries. Chemistry of<br>Materials, 2013, 25, 2319-2326.                    | 3.2  | 173       |
| 367 | Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon:<br>application for rechargeable Li–O2 batteries. RSC Advances, 2013, 3, 8276.                                                                    | 1.7  | 54        |
| 368 | (De)Lithiation Mechanism of Li/SeS <sub><i>x</i></sub> ( <i>x</i> = 0–7) Batteries Determined by in Situ<br>Synchrotron X-ray Diffraction and X-ray Absorption Spectroscopy. Journal of the American Chemical<br>Society, 2013, 135, 8047-8056. | 6.6  | 332       |
| 369 | Evidence for lithium superoxide-like species in the discharge product of a Li–O2 battery. Physical<br>Chemistry Chemical Physics, 2013, 15, 3764.                                                                                               | 1.3  | 188       |
| 370 | Mechanically alloyed composite anode materials based on SiO–SnxFeyCz for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4376.                                                                                                     | 5.2  | 24        |
| 371 | Recent Research Progress on Non-aqueous Lithium-Air Batteries from Argonne National Laboratory.<br>Energies, 2013, 6, 6016-6044.                                                                                                                | 1.6  | 46        |
| 372 | Silicon-Graphene Composite Anodes for High-Energy Lithium Batteries. Energy Technology, 2013, 1,<br>77-84.                                                                                                                                      | 1.8  | 118       |
| 373 | Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection. Energy and Environmental Science, 2012, 5, 8204.                                                             | 15.6 | 105       |
| 374 | A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium and Selenium–Sulfur as<br>a Positive Electrode. Journal of the American Chemical Society, 2012, 134, 4505-4508.                                                      | 6.6  | 534       |
| 375 | Chemistry and electrochemistry of concentric ring cathode Li1.42Ni0.25Mn0.75O2+Î <sup>3</sup> for lithium batteries. Journal of Materials Chemistry, 2012, 22, 12039.                                                                           | 6.7  | 18        |
| 376 | Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy and Environmental Science, 2012, 5, 9632.                                                                                              | 15.6 | 235       |
| 377 | Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Materials, 2012, 11, 942-947.                                                                                                                               | 13.3 | 921       |
| 378 | Challenges Facing Lithium Batteries and Electrical Double‣ayer Capacitors. Angewandte Chemie -<br>International Edition, 2012, 51, 9994-10024.                                                                                                  | 7.2  | 2,407     |

| #   | Article                                                                                                                                                                                                                   | IF    | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 379 | A Metal-Free, Lithium-Ion Oxygen Battery: A Step Forward to Safety in Lithium-Air Batteries. Nano<br>Letters, 2012, 12, 5775-5779.                                                                                        | 4.5   | 148       |
| 380 | Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries. Nano<br>Letters, 2012, 12, 5186-5191.                                                                                            | 4.5   | 231       |
| 381 | Smart Polymeric Cathode Material with Intrinsic Overcharge Protection Based on a<br>2,5â€Diâ€ <i>tert</i> â€butyl―1,4â€dimethoxybenzene Core Structure. Advanced Functional Materials, 2012, 22<br>4485-4492.             | 2,7.8 | 7         |
| 382 | The Role of AlF <sub>3</sub> Coatings in Improving Electrochemical Cycling of Liâ€Enriched<br>Nickelâ€Manganese Oxide Electrodes for Liâ€lon Batteries. Advanced Materials, 2012, 24, 1192-1196.                          | 11.1  | 629       |
| 383 | Batteries: The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched<br>Nickel-Manganese Oxide Electrodes for Li-Ion Batteries (Adv. Mater. 9/2012). Advanced Materials, 2012,<br>24, 1276-1276.      | 11.1  | 8         |
| 384 | Doubleâ€Structured LiMn <sub>0.85</sub> Fe <sub>0.15</sub> PO <sub>4</sub> Coordinated with<br>LiFePO <sub>4</sub> for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition,<br>2012, 51, 1853-1856. | 7.2   | 102       |
| 385 | Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes. Journal of<br>Materials Chemistry, 2011, 21, 9290.                                                                                 | 6.7   | 119       |
| 386 | Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion<br>Battery Cathode Materials. Chemistry of Materials, 2011, 23, 1954-1963.                                                | 3.2   | 106       |
| 387 | Combining the Pair Distribution Function and Computational Methods To Understand Lithium Insertion in Brookite (TiO <sub>2</sub> ). Inorganic Chemistry, 2011, 50, 5855-5857.                                             | 1.9   | 20        |
| 388 | Computational Studies of Polysiloxanes: Oxidation Potentials and Decomposition Reactions. Journal of Physical Chemistry C, 2011, 115, 12216-12223.                                                                        | 1.5   | 89        |
| 389 | Multi-scale study of thermal stability of lithiated graphite. Energy and Environmental Science, 2011, 4, 4023.                                                                                                            | 15.6  | 140       |
| 390 | Dual Lithium Insertion and Conversion Mechanisms in a Titanium-Based Mixed-Anion Nanocomposite.<br>Journal of the American Chemical Society, 2011, 133, 13240-13243.                                                      | 6.6   | 34        |
| 391 | Mechanism of capacity fade of MCMB/Li1.1[Ni1/3Mn1/3Co1/3]0.9O2 cell at elevated temperature and additives to improve its cycle life. Journal of Materials Chemistry, 2011, 21, 17754.                                     | 6.7   | 89        |
| 392 | Solid state synthesis of LiFePO4 studied by in situ high energy X-ray diffraction. Journal of Materials<br>Chemistry, 2011, 21, 5604.                                                                                     | 6.7   | 49        |
| 393 | Advanced cathode materials for lithium-ion batteries. MRS Bulletin, 2011, 36, 498-505.                                                                                                                                    | 1.7   | 40        |
| 394 | Toward high surface area TiO2 brookite with morphology control. Journal of Materials Chemistry, 2011, 21, 3085.                                                                                                           | 6.7   | 33        |
| 395 | Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy and Environmental Science, 2011, 4, 1345.                                                                   | 15.6  | 433       |
| 396 | A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 10108.                                                          | 6.7   | 126       |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | Novel redox shuttle additive for high-voltage cathode materials. Energy and Environmental Science, 2011, 4, 2858.                                                                              | 15.6 | 70        |
| 398 | Novel functionalized electrolyte for MCMB/Li1.156Mn1.844O4 lithium-ion cells. Energy and Environmental Science, 2011, 4, 4567.                                                                 | 15.6 | 13        |
| 399 | Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with<br>Oligoether-Functionalized Silane Electrolytes. Journal of Physical Chemistry C, 2011, 115, 25535-25542. | 1.5  | 166       |
| 400 | Fused ring and linking groups effect on overcharge protection for lithium-ion batteries. Journal of<br>Power Sources, 2011, 196, 1530-1536.                                                    | 4.0  | 26        |
| 401 | Template-assisted synthesis of high packing density SrLi2Ti6O14 for use as anode in 2.7-V lithium-ion battery. Journal of Power Sources, 2011, 196, 2871-2874.                                 | 4.0  | 63        |
| 402 | Nanostructured TiO <sub>2</sub> and Its Application in Lithiumâ€Ion Storage. Advanced Functional<br>Materials, 2011, 21, 3231-3241.                                                            | 7.8  | 154       |
| 403 | Singleâ€Crystal Silicon Membranes with High Lithium Conductivity and Application in Lithiumâ€Air<br>Batteries. Advanced Materials, 2011, 23, 4947-4952.                                        | 11.1 | 46        |
| 404 | Hollow lithiated metal oxide particles as lithium-ion battery cathode materials. Electrochimica Acta, 2011, 56, 1426-1431.                                                                     | 2.6  | 24        |
| 405 | Understanding the redox shuttle stability of 3,5-di-tert-butyl-1,2-dimethoxybenzene for overcharge protection of lithium-ion batteries. Journal of Power Sources, 2010, 195, 4957-4962.        | 4.0  | 68        |
| 406 | Silicon-Containing Carbonates—Synthesis, Characterization, and Additive Effects for Silicon-Based<br>Polymer Electrolytes. Silicon, 2010, 2, 201-208.                                          | 1.8  | 23        |
| 407 | A Novel Cathode Material with a Concentrationâ€Gradient for Highâ€Energy and Safe Lithiumâ€Ion<br>Batteries. Advanced Functional Materials, 2010, 20, 485-491.                                 | 7.8  | 252       |
| 408 | Highâ€Performance Carbonâ€LiMnPO <sub>4</sub> Nanocomposite Cathode for Lithium Batteries.<br>Advanced Functional Materials, 2010, 20, 3260-3265.                                              | 7.8  | 298       |
| 409 | Nanostructured Anode Material for Highâ€Power Battery System in Electric Vehicles. Advanced<br>Materials, 2010, 22, 3052-3057.                                                                 | 11.1 | 359       |
| 410 | Improved electrochemical properties of BiOF-coated 5V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries. Journal of Power Sources, 2010, 195, 2023-2028.                              | 4.0  | 101       |
| 411 | High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries. Electrochimica Acta, 2010, 55, 8621-8627.                              | 2.6  | 98        |
| 412 | Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries. Journal of Physical<br>Chemistry C, 2010, 114, 12800-12804.                                                      | 1.5  | 233       |
| 413 | Role of surface coating on cathode materials for lithium-ion batteries. Journal of Materials<br>Chemistry, 2010, 20, 7606.                                                                     | 6.7  | 569       |
| 414 | Lithium Tetrafluoro Oxalato Phosphate as Electrolyte Additive for Lithium-Ion Cells. Electrochemical and Solid-State Letters, 2010, 13, A11.                                                   | 2.2  | 47        |

| #   | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 415 | MLi <sub>2</sub> Ti <sub>6</sub> O <sub>14</sub> (M = Sr, Ba, 2Na) Lithium Insertion Titanate Materials:<br>A Comparative Study. Inorganic Chemistry, 2010, 49, 2822-2826.                                                                              | 1.9  | 88        |
| 416 | Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 7074.                                                                                              | 6.7  | 214       |
| 417 | Tailored Preparation Methods of TiO <sub>2</sub> Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties. Chemistry of Materials, 2010, 22, 1173-1179.                                                                         | 3.2  | 325       |
| 418 | Synthesis and characterization of alkylsilane ethers with oligo(ethylene oxide) substituents for safe electrolytes in lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 8224.                                                            | 6.7  | 31        |
| 419 | High-energy cathode material for long-life and safe lithium batteries. Nature Materials, 2009, 8, 320-324.                                                                                                                                              | 13.3 | 1,323     |
| 420 | Redox shuttles for safer lithium-ion batteries. Electrochimica Acta, 2009, 54, 5605-5613.                                                                                                                                                               | 2.6  | 148       |
| 421 | LixNi0.25Mn0.75Oy (0.5 ≤≤2, 2 ≤≤2.75) compounds for high-energy lithium-ion batteries. Journal of<br>Materials Chemistry, 2009, 19, 4510.                                                                                                               | 6.7  | 116       |
| 422 | Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. Journal of Materials<br>Chemistry, 2009, 19, 1995.                                                                                                                           | 6.7  | 72        |
| 423 | Nanoporous Structured LiFePO[sub 4] with Spherical Microscale Particles Having High Volumetric Capacity for Lithium Batteries. Electrochemical and Solid-State Letters, 2009, 12, A181.                                                                 | 2.2  | 82        |
| 424 | Low-temperature study of lithium-ion cells using a LiySn micro-reference electrode. Journal of Power<br>Sources, 2007, 174, 373-379.                                                                                                                    | 4.0  | 98        |
| 425 | Synthesis of Spherical Nano- to Microscale Coreâ~'Shell Particles<br>Li[(Ni0.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2and Their Applications to Lithium Batteries. Chemistry of<br>Materials, 2006, 18, 5159-5163.                                                | 3.2  | 116       |
| 426 | Synthesis and Characterization of Tetra- and Trisiloxane-Containing Oligo(ethylene glycol)s Highly<br>Conducting Electrolytes for Lithium Batteries. Chemistry of Materials, 2006, 18, 1289-1295.                                                       | 3.2  | 57        |
| 427 | Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochemistry Communications, 2006, 8, 329-335.                                                                                                                         | 2.3  | 238       |
| 428 | Safety Characteristics of the Li4Ti5O12/LiMn2O4 Li-Ion Battery. Materials Research Society Symposia<br>Proceedings, 2006, 972, 1.                                                                                                                       | 0.1  | 0         |
| 429 | Contribution of the Structural Changes of LiNi[sub 0.8]Co[sub 0.15]Al[sub 0.05]O[sub 2] Cathodes on the Exothermic Reactions in Li-Ion Cells. Journal of the Electrochemical Society, 2006, 153, A731.                                                  | 1.3  | 102       |
| 430 | Effects of additives on thermal stability of Li ion cells. Journal of Power Sources, 2005, 146, 116-120.                                                                                                                                                | 4.0  | 126       |
| 431 | Synthesis and Ionic Conductivity of Cyclosiloxanes with Ethyleneoxy-Containing Substituents.<br>Chemistry of Materials, 2005, 17, 5646-5650.                                                                                                            | 3.2  | 45        |
| 432 | Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2with the Microscale<br>Coreâ°'Shell Structure as the Positive Electrode Material for Lithium Batteries. Journal of the<br>American Chemical Society, 2005, 127, 13411-13418. | 6.6  | 417       |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 433 | Reduction Mechanisms of Ethylene, Propylene, and Vinylethylene Carbonates. Journal of the<br>Electrochemical Society, 2004, 151, A178.                                    | 1.3 | 181       |
| 434 | Flame-retardant additives for lithium-ion batteries. Journal of Power Sources, 2003, 119-121, 383-387.                                                                    | 4.0 | 204       |
| 435 | Tuning working potential of silicon-phosphorus anode via microstructure control for high-energy<br>lithium-ion batteries. Journal of Solid State Electrochemistry, 0, , . | 1.2 | 1         |